People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Golonko, Emilia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Nonwoven fabrics with carbon nanotubes used as interleaves in CFRP
Abstract
The goal of the present study was to implement thermoplastic nonwoven fabrics containing multi-walled carbon nanotubes as interlayers in Carbon Fiber Reinforced Polymers. These functional nonwovens were fabricated by a half-industrial scale melt-blown technique,starting with nanocomposite pellets of copolyamides doped with 3.5wt% of multi-walled carbon nanotubes. Three types of composite panels were fabricated using an out-of-autoclave technique (OoA): one without nonwovens and two with nonwovens. Incorporation of thermoplastic nonwovens doped with 3.5wt% of multi-walled carbon nanotubes increased the surface and volume electrical conductivity in direction Kz by about 2 and 3 orders of magnitude, respectively. Based on the images obtained from a Scanning Electron Microscope, it was found that melted nonwovens adhere well to the carbon fibers. It was also confirmed that carbon nanotubes are well dispersed in nonwovens, which results in an improvement of the overall electrical conductivity of the composite panels. The lack of homogenous layers of nonwovens between the carbon fiber layers decreased the interlaminar shear strength of the composite panels and affected the level of their electrical conductivity. Moreover, thermo-mechanical analysis showed an increase of the glass transition temperature of the resin in the presence of thermoplastic nonwovens and the appearance of an additional peak on the loss modulus curve caused by the polyamide 6 segments present in the copolyamides used.