People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Latko-Durałek, Paulina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Using 3D printing technology to monitor damage in GFRPs
- 2024Electrically conductive and flexible filaments of hot melt adhesive for the fused filament fabrication process
- 2023Effect of carbon nanoparticles on selected properties of hot melt adhesives
- 2023Experimental analysis of the influence of thermoplastic veils doped with nanofillers on the thermal properties of fibre-reinforced composites
- 2023Selected properties of electrically conductive hot melt ethylene-vinyl acetate adhesives
- 2022Electrically Conductive Adhesive Based on Thermoplastic Hot Melt Copolyamide and Multi-Walled Carbon Nanotubescitations
- 2021Fibers of Thermoplastic Copolyamides with Carbon Nanotubes for Electromagnetic Shielding Applicationscitations
- 2020Characterization of thermoplastic nonwovens of copolyamide hot melt adhesives filled with carbon nanotubes produced by melt-blowing methodcitations
- 2020Effect of the areal weight of CNT-doped veils on CFRP electrical propertiescitations
- 2019Carbon Fiber Reinforced Polymers modified with thermoplastic nonwovens containing multi-walled carbon nanotubescitations
- 2019Thermal, Rheological and Mechanical Properties of PETG/rPETG Blendscitations
- 2018Nonwovens fabrics with carbon nanotubes used as a interleaves in CFRP
- 2018Improvement of CFRP electrical conductivity by applying nano enabled products containing carbon nanotubes
- 2018Comparison of properties of CFRPs containing nonwoven fabrics with carbon nanotubes, fabricated by prepreg and liquid technology
- 2018Mechanical Properties of PETG Fibres and Their Usage in Carbon Fibres/Epoxy Composite Laminatescitations
- 2018Nonwoven fabrics with carbon nanotubes used as interleaves in CFRPcitations
- 2018Processing and characterization of thermoplastic nanocomposite fibers of hot melt copolyamide and carbon nanotubescitations
- 2018Hot-melt adhesives based on co-polyamide and multiwalled carbon nanotubescitations
- 2014Thermoplastic nanocomposites with enhanced electrical conductivity
Places of action
Organizations | Location | People |
---|
article
Nonwoven fabrics with carbon nanotubes used as interleaves in CFRP
Abstract
The goal of the present study was to implement thermoplastic nonwoven fabrics containing multi-walled carbon nanotubes as interlayers in Carbon Fiber Reinforced Polymers. These functional nonwovens were fabricated by a half-industrial scale melt-blown technique,starting with nanocomposite pellets of copolyamides doped with 3.5wt% of multi-walled carbon nanotubes. Three types of composite panels were fabricated using an out-of-autoclave technique (OoA): one without nonwovens and two with nonwovens. Incorporation of thermoplastic nonwovens doped with 3.5wt% of multi-walled carbon nanotubes increased the surface and volume electrical conductivity in direction Kz by about 2 and 3 orders of magnitude, respectively. Based on the images obtained from a Scanning Electron Microscope, it was found that melted nonwovens adhere well to the carbon fibers. It was also confirmed that carbon nanotubes are well dispersed in nonwovens, which results in an improvement of the overall electrical conductivity of the composite panels. The lack of homogenous layers of nonwovens between the carbon fiber layers decreased the interlaminar shear strength of the composite panels and affected the level of their electrical conductivity. Moreover, thermo-mechanical analysis showed an increase of the glass transition temperature of the resin in the presence of thermoplastic nonwovens and the appearance of an additional peak on the loss modulus curve caused by the polyamide 6 segments present in the copolyamides used.