People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jiang, Z-T
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2021Physicochemical properties of geopolymer composites with DFT calculations of in-situ reduction of graphene oxidecitations
- 2021Very-few-layer graphene obtained from facile two-step shear exfoliation in aqueous solutioncitations
- 2021High temperature (up to 1200 °C) thermal-mechanical stability of Si and Ni doped CrN framework coatingscitations
- 2020Physico-chemical properties of CrMoN coatings - combined experimental and computational studiescitations
- 2020Tuning the morphology and redox behaviour by varying the concentration of Fe in a CoNiFe ternary oxide heterostructure for hybrid devicescitations
- 2020Sol-gel derived ITO-based bi-layer and tri-layer thin film coatings for organic solar cells applicationscitations
- 2020Role of additives in electrochemical deposition of ternary metal oxide microspheres for supercapacitor applicationscitations
- 2019Nanorose-like ZnCo2O4 coatings synthesized via sol–gel route: Morphology, grain growth and DFT simulationscitations
- 2019Facile synthesis of a nanoporous sea sponge architecture in a binary metal oxidecitations
- 2019Biocompatibility study of multi-layered hydroxyapatite coatings synthesized on Ti-6Al-4V alloys by RF magnetron sputtering for prosthetic-orthopaedic implant applicationscitations
- 2018Understanding the impacts of Al +3 -substitutions on the enhancement of magnetic, dielectric and electrical behaviors of ceramic processed nickel-zinc mixed ferrites: FTIR assisted studiescitations
- 2018Conductive composites of tapioca based bioplastic and electrochemical-mechanical liquid exfoliation (emle) graphenecitations
- 2018Structural, morphological, and optical characterizations of Mo, CrN and Mo:CrN sputtered coatings for potential solar selective applicationscitations
- 2017Improving the optoelectronic properties of titanium-doped indium tin oxide thin filmscitations
- 2017Electrodeposition of polypyrrole and reduced graphene oxide onto carbon bundle fibre as electrode for supercapacitorcitations
- 2017Structural and optical characteristics of pre- and post-annealed sol-gel derived CoCu-oxide coatingscitations
- 2017Investigation of the post-annealing electromagnetic response of Cu–Co oxide coatings via optical measurement and computational modellingcitations
- 2017Probing the effects of thermal treatment on the electronic structure and mechanical properties of Ti-doped ITO thin filmscitations
- 2016Structural thermal stability of graphene oxide-doped copper-cobalt oxide coatings as a solar selective surfacecitations
- 2016Effects of annealing temperatures on the morphological, mechanical, surface chemical bonding, and solar selectivity properties of sputtered TiAlSiN thin filmscitations
- 2016Structural, optical, and mechanical properties of cobalt copper oxide coatings synthesized from low concentrations of sol-gel processcitations
- 2016Chemical bonding states and solar selective characteristics of unbalanced magnetron sputtered TixM1−x−yNyfilmscitations
- 2016Understanding the structural, morphological and optical features of Mo, CrN and CrMoN sputtered films
- 2016Optoelectronic properties of spin coated titanium doped indium tin oxide thin films
- 2016Conversion of NO into N2 over γ-Mo2Ncitations
- 20153d transition metal oxide based sol-gel derived coatings for photothermal applications
- 2014Understanding local bonding structures of Ni-doped chromium nitride coatings through synchrotron radiation NEXAFS spectroscopycitations
- 2014Review of sol-gel derived mixed metal oxide thin film coatings with the addition of carbon materials for selective surface applicationscitations
- 2014Phase transition in CrxAl(1-x)N coating at high temperatures
Places of action
Organizations | Location | People |
---|
article
Conductive composites of tapioca based bioplastic and electrochemical-mechanical liquid exfoliation (emle) graphene
Abstract
The conductive composites of tapioca based bioplastic and the electrochemical- mechanical liquid exfoliation (EMLE) graphene have been successfully synthesized via the solution intercalation method for conductive bioplastic applications. The synthesized EMLE graphene quality, the mechanical properties, the functional group interactions and the conductivity of bioplastic composites, respectively, were analyzed using Raman spectroscopy, Universal Testing Machine (UTM) via ASTM D882-92, Fourier Transform Infrared (FTIR) spectroscopy, Multitester via Four Probe Method. Raman spectroscopy analyses revealed that the graphene used is multi layer graphene (~ 3-10 layer) with deffects and minor impurity of graphene oxide (EMLE graphene). The tensile strength and the Young's modulus increased with the increasing of the EMLE graphene content in the composites, while the elongation decreased. The bioplastic synthesized using the 9% EMLE graphene content and the mixing time of 50 minutes exhibited the best mechanical properties with the tensile strength of 4.116 Mpa, the Young's modulus of 75.476 Mpa, and the elongation of 5.453%. The FTIR spectra indicated that there was a good interactions of EMLE graphene in the bioplastic matrix due to the hydrophylic properties and the secondary bonds between the EMLE graphene and the starch and glycerol plasticizer. The higher amount of graphene added, the higher conductivity of bioplastic would be, and vice versa for the resistivity. The best electrical properties of 1.57 x10−1/ohm.cm (conductivity) and 6.34 ohm.cm (resistivity) was reached by the bioplastic synthesized with addition of 9% EMLE graphene and 50 minutes stirring time. EMLE Graphene is the promissing filler for further development of Tapioca based conductive bioplastics.