People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wan Ibrahim, Mohd Haziman
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2021Evaluation on the rheological and mechanical properties of concrete incorporating eggshell with tire powdercitations
- 2020INFLUENCE OF PALM OIL BIOMASS CLINKER AND EMPTY FRUIT BUNCH FIBERS ON CONCRETE PROPERTIES
- 2020Failure behavior of sandwich honeycomb composite beam containing crack at the skin.citations
- 2019Coal bottom ash as a sustainable supplementary cementitious material for the concrete exposed to seawatercitations
- 2019Effects of Grinding Process on the Properties of the Coal Bottom Ash and Cement Pastecitations
- 2019Performances of concrete containing coal bottom ash with different fineness as a supplementary cementitious material exposed to seawatercitations
- 2019Carbonation of concrete containing mussel (Perna Viridis) shell ashcitations
- 2019Short-term effects of sulphate and chloride on the concrete containing coal bottom ash as supplementary cementitious materialcitations
- 2019Recycling of Coal Ash in Concrete as a Partial Cementitious Resourcecitations
- 2018An Utilization of Palm Fuel Ash (POFA) and Ceramic Waste as Cement Materials Replacement in Concrete Productioncitations
- 2018Evaluate the expressions of compression strength and UPV relationshipcitations
- 2018Influence of ground coal bottom ash on the properties of concretecitations
- 2017Crack classification in concrete beams using AE parameterscitations
- 2017A review on seashells ash as partial cement replacementcitations
- 2017A Review: The Effect of Grinded Coal Bottom Ash on Concretecitations
- 2017The durability of concrete containing recycled tyres as a partial replacement of fine aggregatecitations
- 2016Fresh properties and flexural strength of self-compacting concrete integrating coal bottom ashcitations
- 2014Effect of Rice Husk Ash Fineness on the Properties of Concretecitations
- 2014Strength and microstructure analysis of concrete containing rice husk ash under seawater attack by wetting and drying cyclescitations
- 2014The effect of bottom ash on fresh characteristic, compressive strength and water absorption of self-compacting concretecitations
- 2014Compressive and Flexural Strength of Foamed Concrete Containing Polyolefin Fiberscitations
- 2011Strength and permeability properties of concrete containing rice husk ash with different grinding timecitations
Places of action
Organizations | Location | People |
---|
article
The durability of concrete containing recycled tyres as a partial replacement of fine aggregate
Abstract
Nowadays, uncontrolled disposal of waste materials such as tyres can affect theenvironment. Therefore, careful management of waste disposal must be done in order toconserve the environment. Waste tyres can be use as a replacement for both fine aggregate andcoarse aggregate in the production of concrete. This research was conducted to assess thedurability of concrete containing recycled tyres which have been crushed into fine fragments toreplace fine aggregate in the concrete mix. This study presents an overview of the use of wasterubber as a partial replacement of natural fine aggregate in a concrete mix. 36 concrete cubesmeasuring 100mm x 100mm x 100mm and 12 concrete cubes measuring 150mm x 150mm x150mm were prepared and added with different percentages of rubber from recycled tyres (0%,3%, 5% and 7%) as fine aggregate replacement. The results obtained show that the replacementof fine aggregate with 7% of rubber recorded a compressive strength of 43.7MPa while theaddition of 3% of rubber in the concrete sample recorded a high compressive strength of50.8MPa. This shows that there is a decrease in the strength and workability of concrete as theamount of rubber used a replacement for fine aggregate in concrete increases. On the otherhand, the water absorption test indicated that concrete which contains rubber has better waterabsorption ability. In this study, 3% of rubber was found to be the optimal percentage as apartial replacement for fine aggregate in the production of concrete.