People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bahrami, Abbas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Electrophoretic Deposition of ZnO-Containing Bioactive Glass Coatings on AISI 316L Stainless Steel for Biomedical Applicationscitations
- 2023Failure Analysis of Two HP-Nb Heat-Resistant Tubes after 46,000 h Exposure to Reformer Service Conditionscitations
- 2022Synthesis and characterization of Ag-ion-exchanged zeolite/TiO2 nanocomposites for antibacterial applications and photocatalytic degradation of antibioticscitations
- 2021Facile synthesis of ag nanowire/tio2 and ag nanowire/tio2/go nanocomposites for photocatalytic degradation of rhodamine bcitations
- 2021Facile synthesis of ag nanowire/tio2 and ag nanowire/tio2/go nanocomposites for photocatalytic degradation of rhodamine bcitations
- 2020Corrosion-Fatigue Failure of Gas-Turbine Blades in an Oil and Gas Production Plantcitations
- 2019Creep Failure of Reformer Tubes in a Petrochemical Plantcitations
- 2019Precipitation in Al–Mg–Si Alloys: Modeling
- 2019Root Cause Analysis of Surface Cracks in Heavy Steel Plates during the Hot Rolling Processcitations
- 2019Modeling Electrical Resistivity of Naturally Aged Al–Mg–Si Alloyscitations
- 2019A Study on the Failure of AISI 304 Stainless Steel Tubes in a Gas Heater Unitcitations
- 2019Root cause analysis of surface cracks in heavy steel plates during the hot rolling processcitations
- 2019Modeling electrical resistivity of naturally aged Al–Mg–Si Alloyscitations
- 2019Towards a high strength ductile Ni/Ni3Al/Ni multilayer composite using spark plasma sinteringcitations
- 2019Wear Induced Failure of Automotive Disc Brakes—A Case Studycitations
- 2019A study on the failure of AISI 304 stainless steel tubes in a gas heater unitcitations
- 2017Microstructural characteristics of nano-structured Fe-28.5Ni steel by means of severe plastic deformationcitations
Places of action
Organizations | Location | People |
---|
article
Microstructural characteristics of nano-structured Fe-28.5Ni steel by means of severe plastic deformation
Abstract
<jats:title>Abstract</jats:title><jats:p>Microstructural evolution together with changes in mechanical properties of an high nickel content steel processed by various cycles of accumulative roll bonding (ARB) is explored. It is shown by Electron Backscatter Diffraction (EBSD) analysis that after successive roll bonding processes a stabilized nano-structure is developed containing sufficient amount of ductility under severe plastic deformation. A mean grain size of few hundred nano meter was obtained after 6-cycle of ARB process meaning that the successive ARB cycles made the structure quite refined. The starting material was mainly coming from the transformation of martensite to retained austenite, particularly under high temperature and in high cycle of ARB process. This is an early indication of the stabilization of retained austenite during the ARB process through grain refinement phenomenon. Uniaxial tensile test demonstrated that yield strength significantly improves by only one cycle of ARB process. Successive cycles of ARB process gradually increased the yield and the ultimate tensile strengths at the expense of ductility. The main cause of such a substantial increase in yield strength is discussed. Remarkably high amount of ductility was still observed in a very high amount of deformation that was applied in the 6-cycle ARB process.</jats:p>