People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nairn, Kate M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
Amino functionalized SiO 2 nanoparticles for seeding MOF-5
Abstract
<p>Here we present a new type of approach for the mass production of metallorganic frameworks (MOFs). In particular, a heterogeneous process for MOF-5 growth involving amino functionalized silica nanoparticles is presented. The proposed sol-gel approach provides a promising route toward the large-scale production of colloidal MOFs by leveraging the enormous surface areas offered by nano-sized seeds used as nucleating agents. The synthesis of the ceramic seeds (SiO<sub>2</sub> NPs) is performed at room temperature and considerable volumes of MOF crystals can be produced in 1/10 of the time required for the conventional solvothermal method. The growth of the crystals has been observed with optical microscopy, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX) and the crystal quality has been verified using X-ray powder diffraction.</p>