People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mohd Nor, Mohd Khir
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2020Damage Initiation and Evolution Analysis of Hot Extruded Recycled Aluminium Alloys (AA6061)citations
- 2020Characterization of Continuous Gradient Functionally Graded Natural Fiber Reinforced Polymer Compositescitations
- 2017Effect of Rotating Mold Speed on Microstructure of Al LM6 Hollow Cylinder Fabricated Using Centrifugal Methodcitations
- 2017Deflection of elastic beam with SMA wires eccentrically insertedcitations
- 2016Fracture toughness of woven kenaf fibre reinforced compositescitations
Places of action
Organizations | Location | People |
---|
article
Fracture toughness of woven kenaf fibre reinforced composites
Abstract
This paper presents the role of fibre orientations on the woven-type kenaf fibre reinforced composites. According to literature survey, lack of information regarding to the fracture toughness of woven kenaf fibre reinforced composites. Fracture toughness tests were performed using ASTM D5045. Four fibre orientations were used such as 0/15/0/-15/0, 0/30/0/-30/0, 0/45/0/-45/0 and 0/90/0/-90/0 and on the other hand virgin polyester and unidirectional fibre reinforced composites were also used for comparisons. Based on the experimental works, woven-typed composites produced lower fracture toughness compared with the unidirectional fiber composite. Fracture toughness obtained from different fibre orientations composites are almost identical however 0/30/0/-30/0 and 0/90/0/-90/0 produced higher toughness relative with others. Fracture mechanisms revealed that as expected the fibres aligned along the stress direction capable to sustain better mechanical deformation and therefore producing higher fracture toughness.