Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ahmed, Saad

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Understanding fatigue crack propagation pathways in Additively Manufactured AlSi10Mg1citations

Places of action

Chart of shared publication
Withers, Pj
1 / 103 shared
Gholinia, Ali
1 / 39 shared
Rangaraj, S.
1 / 1 shared
Davis, Alec E.
1 / 24 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Withers, Pj
  • Gholinia, Ali
  • Rangaraj, S.
  • Davis, Alec E.
OrganizationsLocationPeople

document

Understanding fatigue crack propagation pathways in Additively Manufactured AlSi10Mg

  • Withers, Pj
  • Ahmed, Saad
  • Gholinia, Ali
  • Rangaraj, S.
  • Davis, Alec E.
Abstract

Alloys produced through additive manufacturing (AM) offer substantial advantages, particularly in controlling material utilisation and precisely manipulating processing parameters, resulting in finely tuned material properties.However, the grain structure of AM material is typically complex, influenced byfactors such as solidification dynamics, processing parameters, thermal gradients, and residual stress. Fatigue analysis shows considerable scatter due to entrained defects which limits their use as structural components. In this study, fatigue-failed samples from selective laser melted (SLM) AlSi10Mg alloy, oriented horizontal and vertical to the build direction were analysed to understand crack propagation paths. Here X-ray Computed Tomography (CT) was used to examine internal porosity from which fatigue cracks initiate, complemented by electron <br/>backscattered diffraction (EBSD) mapping. This enabled us to recognize the crucial role of the complex grain microstructure in controlling fatigue crack propagation.<br/>

Topics
  • impedance spectroscopy
  • grain
  • tomography
  • crack
  • fatigue
  • electron backscatter diffraction
  • porosity
  • additive manufacturing
  • solidification