People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tavares, Luciana
University of Southern Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Micro-macro relationship between microstructure and mechanical behavior of 316L stainless steel fabricated using L-PBF additive manufacturing
- 2024Surfactant-Modified Nanocomposite Thin-Film Capacitors
- 2023Nanoscale thinning of metal-coated polypropylene films by Helium-ion irradiation
- 2023Nanoscale thinning of metal-coated polypropylene films by Helium-ion irradiation
- 2020Surface-Controlled Crystal Alignment of Naphthyl End-Capped Oligothiophene on Graphene: Thin-Film Growth Studied by In Situ X-ray Diffractioncitations
- 2020Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beamscitations
- 2020Surface-Controlled Crystal Alignment of Naphthyl End-Capped Oligothiophene on Graphene: Thin-Film Growth Studied by in Situ X-ray Diffractioncitations
- 2020Semiconducting Supramolecular Organic Frameworks Assembled from a Near-Infrared Fluorescent Macrocyclic Probe and Fullerenescitations
- 2020Semiconducting Supramolecular Organic Frameworks Assembled from a Near-Infrared Fluorescent Macrocyclic Probe and Fullerenescitations
- 2018FIB NANOPATTERNING OF METAL FILMS ON PMMA SUBSTRATES: NON-SPUTTERING MODE
- 2014Laser-induced charge separation in organic nanofibers
- 2013Surface plasmon polariton propagation in organic nanofiber based plasmonic waveguidescitations
Places of action
Organizations | Location | People |
---|
article
Micro-macro relationship between microstructure and mechanical behavior of 316L stainless steel fabricated using L-PBF additive manufacturing
Abstract
Compared to traditional production techniques, additive manufacturing (AM) of metallic components has several benefits, mainly little material waste and more design freedom. AM process based on laser powder bed fusion has many key<br/>process parameters including scanning speed, layer thickness, build direction, and printing power. Each one of these parameters influences microstructure, and hence macro-mechanical behavior of the manufactured part, as the part<br/>microstructure plays a critical role in determining the mechanical properties. This work aims to address a relationship between micro-structure and macromechanical behavior of AM fabricated parts made of 316L Stainless Steel. Both asbuilt and heat-treated samples are being used for experimental testing and microstructure characterizations. Arcan fixture is used to evaluate the macromechanical fracture behavior of the material under mode-I, mode-II, and mixedmode conditions. Microstructure evaluations of the fracture surfaces are done using scanning electron microscopy and X-Ray diffraction techniques. Finally, a correlation between micro-scale characteristics and macro-mechanical behavior is obtained together with different AM process parameters.