People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hartmann, Christoph
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024New test rig for biaxial and plane strain states on uniaxial testing machines
- 2023Predicting the local solidification time using spherical neural networks
- 2023An artificial neural network approach on crystal plasticity for material modelling in macroscopic simulationscitations
- 2023Establishing Equal-Channel Angular Pressing (ECAP) for sheet metals by using backpressure: manufacturing of high-strength aluminum AA5083 sheetscitations
- 2023Analysis of the melting and solidification process of aluminum in a mirror furnace using Fiber-Bragg-Grating and numerical modelscitations
- 2022Localization of cavities in cast components via impulse excitation and a finite element analysiscitations
- 2021Combining Structural Optimization and Process Assurance in Implicit Modelling for Casting Partscitations
- 2021Feasibility of Acoustic Print Head Monitoring for Binder Jetting Processes with Artificial Neural Networkscitations
- 2019Data-Driven Compensation for Bulk Formed Parts Based on Material Point Trackingcitations
Places of action
Organizations | Location | People |
---|
article
New test rig for biaxial and plane strain states on uniaxial testing machines
Abstract
<jats:title>Abstract</jats:title><jats:p>The increasing interest in hydrogen technology and storage systems has also significant influence on material characterization. Storage solutions such as cryo-compressed hydrogen (CcH2) or compressed gaseous hydrogen (CGH2) use high pressure to improve the energy density. The pressurized hydrogen is stored in a pressure vessel. This leads to various strain states in the vessel, which are difficult to reproduce with standard testing equipment, such as a uniaxial testing machine. This contribution presents a new test rig for uniaxial testing machines that is able to generate a biaxial load on a cruciform specimen. A hinged structure converts the uniaxial load into a biaxial load. Different attachments allow both equi-biaxial and plane strain states. In addition, the test rig provides access to both sides of the specimen, extending the possibilities for testing under load, such as optical measurement, specimen cooling or permeability measurement. Finally, experiments show the functionality of the test rig and the desired strain states in the specimen.</jats:p>