Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ogunjimi, Victor

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Ca-repaired BaZrO<sub>3</sub> nanorods/YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> interface for enhanced pinning in YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> nanocomposites with 2-8% BaZrO<sub>3</sub> dopingcitations

Places of action

Chart of shared publication
Panth, Mohan
1 / 1 shared
Wu, Judy
1 / 2 shared
Sebastian, Mary Ann
1 / 1 shared
Haugan, Timothy
1 / 1 shared
Wang, Haiyan
1 / 15 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Panth, Mohan
  • Wu, Judy
  • Sebastian, Mary Ann
  • Haugan, Timothy
  • Wang, Haiyan
OrganizationsLocationPeople

article

Ca-repaired BaZrO<sub>3</sub> nanorods/YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> interface for enhanced pinning in YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> nanocomposites with 2-8% BaZrO<sub>3</sub> doping

  • Panth, Mohan
  • Wu, Judy
  • Ogunjimi, Victor
  • Sebastian, Mary Ann
  • Haugan, Timothy
  • Wang, Haiyan
Abstract

<jats:title>Abstract</jats:title><jats:p>C-axis aligned BaZrO<jats:sub>3</jats:sub> (BZO) nanorods formed via strain-mediated self-assembly in BZO-doped YaBa<jats:sub>2</jats:sub>Cu<jats:sub>3</jats:sub>O<jats:sub>7-x</jats:sub> (BZO/YBCO) nanocomposite films can provide strong pinning to the quantized magnetic vortices. While the strain initiated from the BZO/YBCO lattice mismatch plays a critical role in nucleation and evolution of the BZO nanorods, it also leads to a highly defective BZO/YBCO interface and hence reduced pinning efficiency of BZO nanorods. This work reports a recent study in probing the effect of BZO/YBCO interface on the pinning efficiency of the BZO nanorods as the interface is repaired dynamically during the BZO nanorod growth using Ca doping. Within the BZO doping range of 2-8 vol.%, significantly enhanced pinning efficiency of the BZO nanorods have been observed. A peak enhancement up to five-fold of critical current density at 9.0 T and 65-77 K has been obtained in the 6 vol.% BZO/YBCO nanocomposites after the interface repair. This result not only illustrates the critical importance of the BZO/YBCO interface in the pinning efficiency, but also provides a facile scheme to achieve such an interface to restore the pristine pinning efficiency of the BZO nanorods.</jats:p>

Topics
  • nanocomposite
  • density
  • impedance spectroscopy
  • current density
  • self-assembly
  • aligned