Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rosnitschek, Tobias

  • Google
  • 2
  • 9
  • 0

University of Bayreuth

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Predicting the local solidification time using spherical neural networkscitations
  • 2023Einfluss fertigungsbedingter Effekte auf das tribologische Verhalten im ADAM-Verfahren gedruckter Bauteilecitations

Places of action

Chart of shared publication
Bauer, Constantin
1 / 3 shared
Volk, Wolfram
1 / 43 shared
Hartmann, Christoph
1 / 9 shared
Erber, Maximilian
1 / 3 shared
Tremmel, Stephan
2 / 13 shared
Alber-Laukant, Bettina
1 / 1 shared
Güldali, Muhammet Ali
1 / 1 shared
Orgeldinger, Christian
1 / 2 shared
Seynstahl, Armin
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Bauer, Constantin
  • Volk, Wolfram
  • Hartmann, Christoph
  • Erber, Maximilian
  • Tremmel, Stephan
  • Alber-Laukant, Bettina
  • Güldali, Muhammet Ali
  • Orgeldinger, Christian
  • Seynstahl, Armin
OrganizationsLocationPeople

article

Predicting the local solidification time using spherical neural networks

  • Bauer, Constantin
  • Volk, Wolfram
  • Hartmann, Christoph
  • Erber, Maximilian
  • Tremmel, Stephan
  • Alber-Laukant, Bettina
  • Güldali, Muhammet Ali
  • Rosnitschek, Tobias
Abstract

<jats:title>Abstract</jats:title><jats:p>Castings are predestined for the application of structural optimization, but to date, the integration of process simulation into structural optimization is limited due to high computational cost and is therefore often neglected at the beginning of the design process. This leads to the need for surrogate models, which allow a fast and simplified evaluation of design proposals during the optimization in order to improve the integration. This article introduces a novel approach that estimates the solidification time of randomly created geometries solely based on the casting geometry. The approach uses ray-tracing methods to calculate the distance function along preset directions. The estimated solidification time is calculated using a Spherical Convolutional Neural Network (CNN). The training data is obtained by several thousand solidification simulations using the optimization toolkit of a commercial casting simulation software combined with further data augmentation. The model is experimentally validated for five different geometries in the sand casting process.</jats:p>

Topics
  • impedance spectroscopy
  • simulation
  • solidification
  • sand casting