Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marongiu, Gianluca

  • Google
  • 2
  • 9
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Thermal Properties of Eco-Friendly Earthen Materials Stabilized with Bio-Based Polymers: Experimental Data and Modeling Procedure for Improving Mix-Design4citations
  • 2023Vibro-Acoustic Modulation with broadband pump excitation for efficient impact damage detection in composite materials3citations

Places of action

Chart of shared publication
Lai, Daniele
1 / 1 shared
Cappai, Marta
1 / 1 shared
Ricciu, Roberto
1 / 1 shared
Pia, Giorgio
1 / 22 shared
Shoukat, Rizwan
1 / 1 shared
Pilia, Luca
1 / 13 shared
Loi, Gabriela
1 / 11 shared
Aymerich, Francesco
1 / 30 shared
Porcu, Maria Cristina
1 / 5 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Lai, Daniele
  • Cappai, Marta
  • Ricciu, Roberto
  • Pia, Giorgio
  • Shoukat, Rizwan
  • Pilia, Luca
  • Loi, Gabriela
  • Aymerich, Francesco
  • Porcu, Maria Cristina
OrganizationsLocationPeople

article

Vibro-Acoustic Modulation with broadband pump excitation for efficient impact damage detection in composite materials

  • Loi, Gabriela
  • Aymerich, Francesco
  • Porcu, Maria Cristina
  • Marongiu, Gianluca
Abstract

In the past few decades, the need for efficient and reliable Structural Health Monitoring strategies has led to the development of several approaches for damage detection and characterization purposes. Among them, the Nonlinear Vibro-Acoustic Modulation (VAM) exploits the modulation arising from the interaction of two concurrently applied driving waves, namely the probe and the pump excitations, in the presence of nonlinear scatters such as cracks and defects. Therefore, the VAM provides information on the emergence of internal damage by extracting the nonlinear modulated components of the response of a damaged system. Originally proposed for granular media, the method has shown to be effective in detecting the presence of defects also in metals and composite materials. Nonetheless, its efficacy is highly affected by the excitation frequencies, which are usually chosen among the system resonances. The need for a preliminary modal analysis and, at once, the risk of selecting pump-probe frequency combinations with low sensitivity to damage may make the procedure time-consuming and not fully reliable, preventing the VAM technique from being widely accepted as a robust monitoring tool. To overcome these limitations, a broadband excitation may be used. This study assesses the effectiveness of the VAM technique when a combination of a frequency-swept pump excitation and a mono-harmonic probe wave is applied to drive the sample. Experimental tests were conducted on a composite laminated beam mounted on an electrodynamic shaker and tested in both pristine and damaged conditions. Low-profile surface-bonded piezoceramic transducers were used for both probe excitation and sensing. Barely visible impact damage (BVID) was introduced in the composite beam to examine the potential of the approach for the detection of very small, localized damage. The results show that the use of VAM with a broadband low-frequency excitation may be an effective option for identifying nonlinearities associated with typical damage occurring in ...

Topics
  • impedance spectroscopy
  • surface
  • crack
  • composite