People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhang, Xiaodan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2022Heterogeneous microstructure and failure analysis of yaw gear rings
- 2022Heterogeneous microstructure and failure analysis of yaw gear rings
- 2020Multi-axial Fatigue of Head-Hardened Pearlitic and Austenitic Manganese Railway Steels: A Comparative Studycitations
- 2020Realizing the Potential of RF-Sputtered Hydrogenated Fluorine-Doped Indium Oxide as an Electrode Material for Ultrathin SiO x/Poly-Si Passivating Contactscitations
- 2020Realizing the Potential of RF-Sputtered Hydrogenated Fluorine-Doped Indium Oxide as an Electrode Material for Ultrathin SiO x /Poly-Si Passivating Contactscitations
- 2019Local stress and strain in heterogeneously deformed aluminum: a comparison analysis by microhardness, electron microscopy and finite element modellingcitations
- 2019Comparison of local stress and strain in a heterogeneouslycompressed AA 1050 ring by electron microscopy, microhardness and finite element modelling
- 2018Evaluation of local strength via microstructural quantification in a pearlitic rail steel deformed by simultaneous compression and torsioncitations
- 2017Local microstructure and flow stress in deformed metalscitations
- 2015Microstructure and hardness development in a copper-nickel diffusion gradient model system
- 2014Grinding induced martensite on the surface of rails
Places of action
Organizations | Location | People |
---|
article
Heterogeneous microstructure and failure analysis of yaw gear rings
Abstract
The microstructure and hardness of two cracked and failed steel (42CrMo4) teeth from two different yaw rings have been investigated. It is shown that the surface quenching and tempering treatments introduce heterogeneous microstructures with a low-temperature tempered hard martensite surface layer and a high-temperature tempered matrix. This is common to both teeth, however, the gradient microstructure and hardness are different for these two yaw rings. It is suggested that this difference in gradient strongly affects cracking and failure. The failure mechanisms for the two teeth are discussed based on the microstructure and hardness analysis.