Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Penter, Lars

  • Google
  • 8
  • 22
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2025Real-time quality prediction and local adjustment of friction with digital twin in sheet metal forming7citations
  • 2023Hochdämpfende Metall-Graphit-Verbundwerkstoffe in Werkzeugmaschinen Experimentelle Charakterisierung der Dämpfungswirkung von Metall-Graphit-Verbundwerkstoffen als Fugenbeilage in einer Vorschubachsecitations
  • 2022Metamodeling of a deep drawing process using conditional Generative Adversarial Networks3citations
  • 20213D printing technology for low cost manufacturing of hybrid prototypes from multi material composites4citations
  • 2018Thermo-mechanical interactions in hot stamping ; Thermo-mechanische Wechselwirkungen beim Presshärtencitations
  • 2018Compensation for tool deformation and expansion in virtual try-outs of hot stamping tools3citations
  • 2018Compensation for tool deformation and expansion in virtual try-outs of hot stamping tools ; Kompensation der Werkzeugverformung und -ausdehung im virtuellen Einarbeitungsprozess von Presshärtewerkzeugen3citations
  • 2017Evaluating the Factors Influencing the Friction Behavior of Paperboard during the Deep Drawing Processcitations

Places of action

Chart of shared publication
Ihlenfeldt, Steffen
5 / 15 shared
Klingel, Lars
1 / 1 shared
Rückert, Ulrike
1 / 1 shared
Verl, Alexander
1 / 2 shared
Link, Patrick
2 / 2 shared
Weißgärber, Thomas
1 / 19 shared
Hutsch, Thomas
1 / 4 shared
Rudolph, Holger
1 / 1 shared
Peukert, Christoph
1 / 1 shared
Zhou, Xin
1 / 9 shared
Bodenstab, Johannes
1 / 1 shared
Maier, J.
1 / 16 shared
Kauschinger, B.
1 / 1 shared
Modler, Nils
1 / 355 shared
Lebelt, T.
1 / 4 shared
Ihlenfeldt, S.
1 / 1 shared
Pierschel, Norbert
3 / 8 shared
Hauptmann, Marek
1 / 5 shared
Lenske, Alexander
1 / 2 shared
Majschak, Jens-Peter
1 / 9 shared
Schneider, Matti
1 / 32 shared
Müller, Tobias
1 / 16 shared
Chart of publication period
2025
2023
2022
2021
2018
2017

Co-Authors (by relevance)

  • Ihlenfeldt, Steffen
  • Klingel, Lars
  • Rückert, Ulrike
  • Verl, Alexander
  • Link, Patrick
  • Weißgärber, Thomas
  • Hutsch, Thomas
  • Rudolph, Holger
  • Peukert, Christoph
  • Zhou, Xin
  • Bodenstab, Johannes
  • Maier, J.
  • Kauschinger, B.
  • Modler, Nils
  • Lebelt, T.
  • Ihlenfeldt, S.
  • Pierschel, Norbert
  • Hauptmann, Marek
  • Lenske, Alexander
  • Majschak, Jens-Peter
  • Schneider, Matti
  • Müller, Tobias
OrganizationsLocationPeople

article

Metamodeling of a deep drawing process using conditional Generative Adversarial Networks

  • Ihlenfeldt, Steffen
  • Bodenstab, Johannes
  • Penter, Lars
  • Link, Patrick
Abstract

Optimization tasks as well as quality predictions for process control require fast responding process metamodels. A common strategy for sheet metal forming is building fast data driven metamodels based on results of Finite Element (FE) process simulations. However, FE simulations with complex material models and large parts with many elements consume extensive computational time. Hence, one major challenge in developing metamodels is to achieve a good prediction precision with limited data, while these predictions still need to be robust against varying input parameters. Therefore, the aim of this study was to evaluate if conditional Generative Adversarial Networks (cGAN) are applicable for predicting results of FE deep drawing simulations, since cGANs could achieve high performance in similar tasks in previous work. This involves investigations of the influence of data required to achieve a defined precision and to predict e.g. wrinkling phenomena. Results show that the cGAN used in this study was able to predict forming results with an averaged absolute deviation of sheet thickness of 0.025 mm, even when using a comparable small amount of data.

Topics
  • impedance spectroscopy
  • simulation
  • drawing
  • machine learning