Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rumor, L.

  • Google
  • 1
  • 9
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022On the inverse identification methods for forming plasticity models using full-field measurements8citations

Places of action

Chart of shared publication
Gonçalves, M.
1 / 4 shared
Martins, J. M. P.
1 / 2 shared
Oliveira, M. G.
1 / 1 shared
Prates, P.
1 / 3 shared
Andrade-Campos, António
1 / 7 shared
Bastos, N.
1 / 1 shared
Conde, M.
1 / 1 shared
Henriques, J.
1 / 1 shared
Lourenço, R.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Gonçalves, M.
  • Martins, J. M. P.
  • Oliveira, M. G.
  • Prates, P.
  • Andrade-Campos, António
  • Bastos, N.
  • Conde, M.
  • Henriques, J.
  • Lourenço, R.
OrganizationsLocationPeople

article

On the inverse identification methods for forming plasticity models using full-field measurements

  • Gonçalves, M.
  • Martins, J. M. P.
  • Oliveira, M. G.
  • Prates, P.
  • Rumor, L.
  • Andrade-Campos, António
  • Bastos, N.
  • Conde, M.
  • Henriques, J.
  • Lourenço, R.
Abstract

<jats:title>Abstract</jats:title><jats:p>The simulation of deep drawing processes and its quality is intrinsically dependent on the accuracy of the constitutive model in reproducing the mechanical behaviour of the sheet metal material. Today, the calibration of elastoplastic models – correspondent to the inverse identification of the material parameters – often uses full-field measurements, through Digital Image Correlation (DIC) techniques, to capture non-homogeneous strain fields and states, coupled with non-straightforward numerical inverse methodologies. In the last decade, new parameter identification methodologies, such as the Finite Element Model Updating (FEMU), the Constitutive Equation Gap (CEG) method, the Equilibrium Gap Method (EGM) and the Virtual Fields Method (VFM) have been developed and have proven to be effective for non-linear plasticity models. Nonetheless, the FEMU and the VFM have distinguished themselves from the others. More recently, supervised Machine Learning (ML) techniques have been also used as an inverse identification method. These artificial intelligence-based methods use large datasets of numerical tests to train an inverse model in which the input is the history of the strain field and loads during the test, and the output are directly the material parameters.</jats:p><jats:p>The goal of this paper is to analyse, compare and discuss these inverse identification methods, with particular focus on the FEMU, VFM, and ML methodologies. A heterogeneous tensile-load test is considered to compare in detail the FEMU, VFM, and ML strategies.</jats:p>

Topics
  • impedance spectroscopy
  • simulation
  • plasticity
  • drawing
  • machine learning