Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tamiri, F. M.

  • Google
  • 1
  • 5
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022A review on the development of electro-carburisation process2citations

Places of action

Chart of shared publication
Siambun, N. J.
1 / 1 shared
Liew, W. Y. H.
1 / 2 shared
Bahrin, S. A.
1 / 1 shared
Gakim, M.
1 / 1 shared
On, S. C.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Siambun, N. J.
  • Liew, W. Y. H.
  • Bahrin, S. A.
  • Gakim, M.
  • On, S. C.
OrganizationsLocationPeople

article

A review on the development of electro-carburisation process

  • Siambun, N. J.
  • Liew, W. Y. H.
  • Tamiri, F. M.
  • Bahrin, S. A.
  • Gakim, M.
  • On, S. C.
Abstract

<jats:title>Abstract</jats:title><jats:p>The purpose of this paper is to review the early development of electro-carburisation technology and the research findings related to the electro-carburisation process. In general, conventional liquid carburisation of steel using a molten cyanide bath is carried out to improve the performance of mild steel, however this process produces toxic cyanide waste. Thus, other alternatives for liquid carburisation are necessary. Electro-carburisation process using carbonate-base molten salt, under a CO<jats:sub>2</jats:sub> environment was developed as one of the alternatives to liquid carburising. Metal to be treated is exposed to the carbon-rich liquid in the molten cyanide bath and electro-carburisation. However, the metal is simply immersed inside the cyanide bath during conventional liquid carburising, while connected to the cathode in the electro-carburisation. The electro-carburisation involves a diffusion of carbon atoms into the surface of the metal which enhance the surface hardness of the metal. The effects of electrolysis parameters to the surface hardness and case hardening of treated metal have been reported in several journals. This article summarises the research findings. Apart from that, the quenching process and heat treatment post quenching also plays an important role in the quality of the carburised metal, therefore also reviewed in this article.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • steel
  • hardness
  • quenching