Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kersner, Z.

  • Google
  • 2
  • 11
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Mechanical fracture parameters of concrete drill-core specimens supported by a slenderness ratio study4citations
  • 2015Engineering properties of composite materials containing waste ceramic dust from advanced hollow brick production as a partial replacement of Portland cement9citations

Places of action

Chart of shared publication
Lisztwan, D.
1 / 1 shared
Danek, P.
1 / 1 shared
Frantík, P.
1 / 1 shared
Siddique, J. A.
1 / 2 shared
Keppert, M.
1 / 44 shared
Ondracek, M.
1 / 2 shared
Rovnanikova, P.
1 / 2 shared
Vejmelkova, E.
1 / 10 shared
Kulovana, T.
1 / 2 shared
Pokorny, J.
1 / 10 shared
Černý, R.
1 / 427 shared
Chart of publication period
2021
2015

Co-Authors (by relevance)

  • Lisztwan, D.
  • Danek, P.
  • Frantík, P.
  • Siddique, J. A.
  • Keppert, M.
  • Ondracek, M.
  • Rovnanikova, P.
  • Vejmelkova, E.
  • Kulovana, T.
  • Pokorny, J.
  • Černý, R.
OrganizationsLocationPeople

article

Mechanical fracture parameters of concrete drill-core specimens supported by a slenderness ratio study

  • Lisztwan, D.
  • Danek, P.
  • Frantík, P.
  • Kersner, Z.
Abstract

<jats:title>Abstract</jats:title><jats:p>The detailed analytical and experimental investigation of the fracture behaviour of quasi-brittle materials is an endeavour which has been ongoing worldwide for many years. Such materials are usually characterized in terms of their mechanical fracture parameters, which are determined based on the evaluation of quasi-static fracture experiments. One of the most commonly used building materials with a quasi-brittle response is concrete, which is most often based on a cement matrix. It is sometimes also necessary to characterize concrete included in existing structures. In this case, test specimens are obtained by core drilling, and the investigation is conducted with the requirement to maximize the number of parameters obtained while minimizing the number of test specimens drilled from the structure. This paper focuses on the mechanical fracture parameters of core-drilled specimens taken from a selected concrete structure. Tests were performed on cylindrical specimens with a chevron-notched stress concentrator in the three-point bending configuration in order to determine modulus of elasticity, fracture toughness and fracture energy. Subsequently, theoretical compressive strength was estimated and tests for the determination of compressive strength values were performed focusing on dependence on the slenderness ratio, i.e. the relationship between the compressive strength and the length to diameter ratio of the cylindrical specimens. In relation to the obtained mechanical fracture parameters, selected specimens were analysed and three-dimensionally characterized via high-resolution X-ray computed tomography.</jats:p>

Topics
  • impedance spectroscopy
  • experiment
  • tomography
  • strength
  • cement
  • elasticity
  • fracture toughness