Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lustig, P.

  • Google
  • 1
  • 11
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021The commissioning of a hybrid multi-material 3D printer3citations

Places of action

Chart of shared publication
Castellví, A.
1 / 1 shared
Valls, A.
1 / 1 shared
Ayats, M.
1 / 1 shared
Minguella, J.
1 / 2 shared
Fenollosa, F.
1 / 2 shared
Uceda, R.
1 / 2 shared
Poudelet, Louison
1 / 2 shared
Tejo, A.
1 / 2 shared
Krauel, L.
1 / 1 shared
Calvo, L.
1 / 3 shared
Buj, I.
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Castellví, A.
  • Valls, A.
  • Ayats, M.
  • Minguella, J.
  • Fenollosa, F.
  • Uceda, R.
  • Poudelet, Louison
  • Tejo, A.
  • Krauel, L.
  • Calvo, L.
  • Buj, I.
OrganizationsLocationPeople

article

The commissioning of a hybrid multi-material 3D printer

  • Castellví, A.
  • Valls, A.
  • Ayats, M.
  • Minguella, J.
  • Lustig, P.
  • Fenollosa, F.
  • Uceda, R.
  • Poudelet, Louison
  • Tejo, A.
  • Krauel, L.
  • Calvo, L.
  • Buj, I.
Abstract

<jats:title>Abstract</jats:title><jats:p>Additive Manufacturing (AM) has rapidly become an important technology in both research and industry. This development has allowed the evolution of 3D printers which are able to print complex geometries at low costs and faster than traditional methods. Despite this, most of these printers are either only for using one material or one technology. This limits a lot its use in different sectors such as aeronautics, automotive or health, because multi-material prototypes are needed. For example, surgeons need surgical planning prototypes for preoperative planning. These 3D printed prototypes have mainly been manufactured using just one technology. As a result, the prototypes have some main limitations: (1) do not actually mimic the anatomical structures of the human body, (2) high costs specially for Material Jetting and Powder Bed Fusion AM technologies. Therefore, the aim of present manuscript is the design, development, and commissioning of a hybrid multi-material 3D printer.</jats:p>

Topics
  • impedance spectroscopy
  • material jetting
  • powder bed fusion