People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hagenlocher, Christian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Melt pool dynamics on different substrate materials in high-speed laser directed energy deposition processcitations
- 2021Synchrotron X-ray Analysis of the Influence of the Magnesium Content on the Absorptance during Full-Penetration Laser Welding of Aluminumcitations
- 2021High-speed synchrotron X-ray investigation of full penetration welding of aluminum sheets
- 2021Influence of the laser cutting front geometry on the striation formation analysed with high-speed synchrotron X-ray imagingcitations
Places of action
Organizations | Location | People |
---|
article
Influence of the laser cutting front geometry on the striation formation analysed with high-speed synchrotron X-ray imaging
Abstract
The generation of low surface roughness of the cut edge during laser beam cutting is a challenge. The striation pattern, which determines the surface roughness, can be distinguished into regular and interrupted striations, the latter resulting in an increased surface roughness. In order to analyse their formation, the space- and time-resolved cutting front geometry and melt film thickness were captured during laser beam fusion cutting of aluminium sheets with a framerate of 1000 Hz by means of high-speed synchrotron X-ray imaging. The comparison of the contours of the cutting fronts for a cut result with regular und interrupted striations shows that the contour fluctuates significantly more in case of interrupted striations. This leads to a strong fluctuation of the local angle of incidence. In addition, the average angle of incidence decreases, which results in an increase of the average absorbed irradiance. Both phenomena, local increase of absorbed irradiance and its dynamic fluctuation, result in a local increase of the melt film thickness at the cutting front which is responsible for the formation of the interrupted striations.