People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hummel, Marc
Fraunhofer Institute for Laser Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Unveiling thermo‐fluid dynamic phenomena in laser beam welding
- 2024Towards an Understanding of the Challenges in Laser Beam Welding of Copper - Observation of the Laser-Matter Interaction Zone in Laser Beam Welding of Copper and Steel Using in Situ Synchrotron X-Ray Imagingcitations
- 2023Towards an Understanding of the Challenges in Laser Beam Welding of Copper – Observation of the Laser-Matter Interaction Zone in Laser Beam Welding of Copper and Steel Using in Situ Synchrotron X-Ray Imagingcitations
- 2022Pore formation and melt pool analysis of laser welded Al-Cu joints using synchrotron radiationcitations
- 2021Synchrotron X-ray Analysis of the Influence of the Magnesium Content on the Absorptance during Full-Penetration Laser Welding of Aluminumcitations
- 2021Formation of Die Soldering and the Influence of Alloying Elements on the Intermetallic Interfacecitations
- 2021Influence of the laser cutting front geometry on the striation formation analysed with high-speed synchrotron X-ray imagingcitations
- 2020Processing of Keyhole Depth Measurement Data during Laser Beam Micro Weldingcitations
Places of action
Organizations | Location | People |
---|
article
Influence of the laser cutting front geometry on the striation formation analysed with high-speed synchrotron X-ray imaging
Abstract
The generation of low surface roughness of the cut edge during laser beam cutting is a challenge. The striation pattern, which determines the surface roughness, can be distinguished into regular and interrupted striations, the latter resulting in an increased surface roughness. In order to analyse their formation, the space- and time-resolved cutting front geometry and melt film thickness were captured during laser beam fusion cutting of aluminium sheets with a framerate of 1000 Hz by means of high-speed synchrotron X-ray imaging. The comparison of the contours of the cutting fronts for a cut result with regular und interrupted striations shows that the contour fluctuates significantly more in case of interrupted striations. This leads to a strong fluctuation of the local angle of incidence. In addition, the average angle of incidence decreases, which results in an increase of the average absorbed irradiance. Both phenomena, local increase of absorbed irradiance and its dynamic fluctuation, result in a local increase of the melt film thickness at the cutting front which is responsible for the formation of the interrupted striations.