Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nikolov, Georgi

  • Google
  • 2
  • 7
  • 10

Aalborg University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Hardening in laser forming under the temperature gradient mechanism3citations
  • 20173D numerical model of tube-tubesheet joint roller expansion process7citations

Places of action

Chart of shared publication
Kristiansen, Morten
1 / 12 shared
Thomsen, Anders Noel
1 / 1 shared
Nielsen, Karl Brian
1 / 5 shared
Alexouli, Dimitra
1 / 1 shared
Bøjesen, Dennis
1 / 1 shared
Bøystrup, Lisa R.
1 / 1 shared
Klose, Claes R.
1 / 1 shared
Chart of publication period
2021
2017

Co-Authors (by relevance)

  • Kristiansen, Morten
  • Thomsen, Anders Noel
  • Nielsen, Karl Brian
  • Alexouli, Dimitra
  • Bøjesen, Dennis
  • Bøystrup, Lisa R.
  • Klose, Claes R.
OrganizationsLocationPeople

article

Hardening in laser forming under the temperature gradient mechanism

  • Nikolov, Georgi
  • Kristiansen, Morten
  • Thomsen, Anders Noel
Abstract

Laser forming is a contactless thermal forming process that can be applied for both single and double-curved geometries. When it comes to prototyping and small batch production, laser forming has the potential to compete with conventional sheet-metal forming processes; however, an investigation of the relationship between process parameters, hardness distribution and the bend rate is lacking. This study examines the influence of using different sets of processing parameters on the bend rate and the hardness distribution. ANSI 304 stainless steel samples of 1 and 3 mm thickness are laser formed up to 90° with a bend radius equal to their thickness. A theoretical discussion of the material’s hardening kinetics is used to generalize the results. Micro-Vickers hardness test is used to measure the hardness distribution along the 3 mm samples to support the theoretical discussion. The results show that the bend rate increases when using different sets of process parameters; furthermore, the bend arc length has shown to have a significant influence over the bend rate. An increase of hardness is observed on the bottom side of the laser formed samples, indicating potential strain hardening. ; Laser forming is a contactless thermal forming process that can be applied for both single and double-curved geometries. When it comes to prototyping and small batch production, laser forming has the potential to compete with conventional sheet-metal forming processes; however, an investigation of the relationship between process parameters, hardness distribution and the bend rate is lacking. This study examines the influence of using different sets of processing parameters on the bend rate and the hardness distribution. ANSI 304 stainless steel samples of 1 and 3 mm thickness are laser formed up to 90° with a bend radius equal to their thickness. A theoretical discussion of the material's hardening kinetics is used to generalize the results. Micro-Vickers hardness test is used to measure the hardness distribution along the 3 mm ...

Topics
  • impedance spectroscopy
  • stainless steel
  • hardness
  • forming