People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stamboulis, Artemis
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023A Novel Approach for Powder Bed Fusion of Ceramics Using Two Laser Systemscitations
- 2022Processing and interpretation of core‐electron XPS spectra of complex plasma‐treated polyethylene‐based surfaces using a theoretical peak model
- 2021Antimicrobial bioceramics for biomedical applicationscitations
- 2021An Overview of Sputtering Hydroxyapatite for BiomedicalApplicationcitations
- 2019Mechanical testing of antimicrobial biocomposite coating on metallic medical implants as drug delivery systemcitations
- 2017Types of ceramics: Material classcitations
- 2017Types of ceramics : material class
- 2015Nano-hydroxyapatite deposition on titanium using peptide aptamers
- 2015Functionalization of biomedical surfaces by peptide aptamers
- 2014Electrospun Fibres of Polyhydroxybutyrate Synthesized by Ralstonia eutropha from Different Carbon Sourcescitations
- 2014Electrospun Fibres of Polyhydroxybutyrate Synthesized by Ralstonia eutropha from Different Carbon Sourcescitations
- 2014Use of inter-fibril spaces among electrospun fibrils as ion-fixation and nano-crystallization
- 2014Nanoclay addition to a conventional glass ionomer cementscitations
- 2014Electrospun fibres of polyhydroxybutyrate synthesized by ralstonia eutropha from different carbon sourcescitations
- 2014Effect of nanoclay dispersion on the properties of a commercial glass ionomer cementcitations
- 2013Sol-Gel Preparation of Silica-Based Nano-Fibers for Biomédical Applications
- 2013Active screen plasma nitriding enhances cell attachment to polymer surfacescitations
- 2013Nitrogen plasma surface modification enhances cellular compatibility of aluminosilicate glasscitations
- 2012Durability and reliability of medical polymerscitations
- 2011An X-ray micro-fluorescence study to investigate the distribution of Al, Si, P and Ca ions in the surrounding soft tissue after implantation of a calcium phosphate-mullite ceramic composite in a rabbit animal modelcitations
- 2010Effect of active screen plasma nitriding on the biocompatibility of UHMWPE surfaces
- 2008Solid state MAS-NMR and FTIR study of barium containing alumino-silicate glasses
- 2007Real-time nucleation and crystallisation studies of a fluorapatite glass-ceramics using small-angle neutron scattering and neutron diffractioncitations
- 2007Structural characterization of ionomer glasses by multinuclear solid state MAS-NMR spectroscopycitations
- 2006The influence of montmorillonite clay reinforcement on the performance of a glass ionomer restorativecitations
- 2006Real Time Neutron Diffraction Studies of apatite glass ceramicscitations
- 2002Mechanical properties of biodegradable polymer sutures coated with bioactive glasscitations
Places of action
Organizations | Location | People |
---|
article
An Overview of Sputtering Hydroxyapatite for BiomedicalApplication
Abstract
<jats:title>Abstract</jats:title><jats:p>Materials such as biocompatible metals, ceramics, composites, and polymers are used in the fabrication of biomedical implants which are used in the human body especially for the replacement of hard tissues. However, they degrade with time since they are subjected to different mechanical conditions and long-term exposure to fluids corrosion. Therefore, to curb these limitations, the surface properties are usually coated with thin metallic and nonmetallic materials. One such nonmetal is Hydroxyapatite (HA) coating which has the potential of mitigating these shortcomings and it is a biocompatible and bioactive material. This paper provides an overview of the existing literature on the sputtering of hydroxyapatite coating for biomedical applications with emphasis on the deposition conditions and parameters.</jats:p>