People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Breuker, Roeland De
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Aeroelastic Tailoring of a Strut-Braced Wing for a Medium Range Aircraftcitations
- 2023Optimization Framework of a Ram Air Inlet Composite Morphing Flapcitations
- 2022Application of Aeroelastic Tailoring for Load Alleviation on a Flying Demonstrator Wing †citations
- 2022Assessment of an Increased-Fidelity Aeroelastic Experiment for Free Flying Wing Response to Gust Excitation
- 2022Aeroelastic Wing Demonstrator with a Distributed and Decentralized Control Architecturecitations
- 2022An aeroelastic optimisation framework for manufacturable variable stiffness composite wings including critical gust loadscitations
- 2021Development and testing of an active trailing edge morphing demonstrator for a rotary wingcitations
- 2021Skin Panel Optimization of the Common Research Model Wing using Sandwich Compositescitations
- 2021Aeroelastic optimisation of manufacturable tow-steered composite wings with cruise shape constraint and gust loadscitations
- 2021Developing the Model Reduction Framework in High Frame Rate Visual Tracking Environment
- 2020Static and dynamic aeroelastic tailoring with composite blending and manoeuvre load alleviationcitations
- 2020Ground Testing of the FLEXOP Demonstrator Aircraftcitations
- 2019Aeroelastic optimization of composite wings including fatigue loading requirementscitations
- 2018FLEXOP – Application of aeroelastic tailoring to a flying demonstrator wing
- 2018Aeroelastic optimization of composite wings subjected to fatigue loadscitations
- 2017Aeroelastic Design of Blended Composite Structures Using Lamination Parameterscitations
- 2017Aeroelastic tailoring for static and dynamic loads with blending constraints
- 2016Aeroelastic Optimization of Variable Stiffness Composite Wing with Blending Constraintscitations
- 2016A Conceptual Development of a Shape Memory Alloy Actuated Variable Camber Morphing Wing
- 2016Derivation and application of blending constraints in lamination parameter space for composite optimisationcitations
- 2015Special Issue
- 2015Development and Testing of an Unconventional Morphing Wing Concept with Variable Chord and Camber
Places of action
Organizations | Location | People |
---|
article
Aeroelastic optimisation of manufacturable tow-steered composite wings with cruise shape constraint and gust loads
Abstract
<p>In the structural design of aircraft wings, aeroelastic tailoring is used to control the aeroelastic deformation to improve the aerostructural performance by making use of directional stiffness. Recently, tow-steered composites, where the fibre angles continuously vary within each ply, have been proven to have the potential to further expand the advantages of aeroelastic tailoring. This work extends TU Delft aeroelastic tailoring framework PROTEUS by introducing a lay-up retrieval step, so that it can be used for the conceptual design of tow-steered composite wing structures. In the extended framework, aeroelastic tailoring and lay-up retrieval are sequentially and iteratively performed to take static and dynamic loads, manufacturing and cruise shape constraints into consideration. The first step is carried out using PROTEUS, in which the lamination parameters and thickness of the wing sections are optimised under manoeuvre and gust load conditions. Further, for ensuring optimal aircraft performance in cruise flight conditions, the jig twist distribution is allowed to be optimised to maintain a desired prescribed cruise shape. In the second step, the stacking sequence, including minimum steering radius constraint, is retrieved. Since the lamination parameters cannot be matched exactly during the retrieval step, the constraints are checked, and tightened to take the performance loss during retrieval into account. The first step is repeated until all constraints are satisfied after fibre angle retrieval. To demonstrate the usefulness of the proposed optimisation framework, it is applied to the design of the NASA Common Research Model (CRM) wing, of which the objective is minimizing wing mass subjected to aerostructural design constraints, such as aeroelastic stability, aileron effectiveness, material strength and buckling load.</p>