People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Selvam, Anirudh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Statistical modelling and assessment of surface roughness in drilling of hybrid fiber compositecitations
- 2022Modeling and Analysis of Surface Roughness Parameters in Drilling of Silk-glass/epoxy Compositecitations
- 2021Python implementation of fuzzy logic for artificial intelligence modelling and analysis of important parameters in drilling of hybrid fiber composite (HFC)citations
- 2021Python inspired artificial neural networks modeling in drilling of glass-hemp-flax fiber compositescitations
Places of action
Organizations | Location | People |
---|
article
Python implementation of fuzzy logic for artificial intelligence modelling and analysis of important parameters in drilling of hybrid fiber composite (HFC)
Abstract
Composite materials present the advantage of being able to be specially designed for a particular application by combining appropriate reinforcement materials with a matrix material suited to withstand the operant conditions. The use of Hybrid-Fiber Composites (HFCs) addresses the need for greener manufacturing processes while also meeting product specifications in a wide range of applications, all for nominal prices. In order to improve our understanding of the machining processes compatible with HFCs, this paper presents findings from a study in which the effects of drilling on glass-flax-hemp fibre hybrid composite samples are observed and modeled. Pivotal parameters in drilling, namely drill bit diameter, spindle speed and feed rate are studied, and a fuzzy-logic inference system (FIS) coded in Python is used to model the thrust force and torque acting on the composite sample. A comparison between experimentally obtained and model-generated values of the same indicate very good correlation, thus verifying the effectiveness of the FIS.</jats:p>