Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Munusamy, Yamuna

  • Google
  • 3
  • 4
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Impact Modified Polyvinyl Chloride Based Thermoplastic Elastomers: Effect of Nitrile Butadiene Rubber and Graphene Oxide Loading3citations
  • 2021Property Correlations of Polypropylene based Composites Filled with Mimusop elengi Seed Shell Powdercitations
  • 2021Optimization of compounding formulation for the development of high-preformance coating material using waste tire powder for gasket applicationcitations

Places of action

Chart of shared publication
Vijayan, Kuhanraj
1 / 1 shared
Muniyadi, Mathialagan
3 / 4 shared
Chien, Tan Wuan
1 / 1 shared
Siong, Chai Kah
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Vijayan, Kuhanraj
  • Muniyadi, Mathialagan
  • Chien, Tan Wuan
  • Siong, Chai Kah
OrganizationsLocationPeople

article

Optimization of compounding formulation for the development of high-preformance coating material using waste tire powder for gasket application

  • Siong, Chai Kah
  • Munusamy, Yamuna
  • Muniyadi, Mathialagan
Abstract

<jats:title>Abstract</jats:title><jats:p>Nitrile butadiene rubber latex (NBRL) based gasket materials were extensively used in the past due to their excellent oil resistance, good abrasion resistance, and shock absorption as well as good high-temperature stability. Recently, carbon black has been introduced to further improve the oil absorption properties and thermal performance of the gasket materials which increased the total costing and makes the processing difficult due to the agglomeration of carbon black in NBRL. Thus, in this research, waste tire powder (WTP) was introduced to develop high-performance coating materials as an alternative to carbon black in NBRL gasket material. Optimization of new compounding formulation has been carried out by manipulating the WTP loading and hybrid WTP-carbon black filler loading. The filler loading was selected based on the desired surface texture and coating thickness. The experience was also carried out by varying the WTP, Sulphur, and plasticizer loading. The desired surface texture and thickness of coating materials were developed at WTP loading of 80phr and 90phr. Whereas, the optimum Sulphur loading was achieved at 1phr - 2phr, and plasticizer loading of 10phr and 15phr. From the experiments carried out, the optimum loading of WTP was 90phr which gives a fully contained gasket composite. Furthermore, DOP optimum loading is 15phr which gives a smooth surface appearance. Lastly, Sulphur with 1phr gives a more even surface texture as compared to 2phr loading.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • experiment
  • composite
  • texture
  • rubber
  • Sulphur
  • nitrile