Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mohd Nazeri, Muhammad Firdau

  • Google
  • 1
  • 3
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Effect Additions Zn on Sn-0.7Cu Lead-Free Solder: A Short Brief2citations

Places of action

Chart of shared publication
Masri, Mohamad Najmi
1 / 4 shared
Mohamad, Ahmad Azmin
1 / 10 shared
Mohd Tarmizi, Fatin Sufina
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Masri, Mohamad Najmi
  • Mohamad, Ahmad Azmin
  • Mohd Tarmizi, Fatin Sufina
OrganizationsLocationPeople

article

Effect Additions Zn on Sn-0.7Cu Lead-Free Solder: A Short Brief

  • Masri, Mohamad Najmi
  • Mohamad, Ahmad Azmin
  • Mohd Nazeri, Muhammad Firdau
  • Mohd Tarmizi, Fatin Sufina
Abstract

n-0.7Cu lead-free solder is an alternative solder material that suitable to replace Sn-Pb solder in electronic manufacturing. However, it has a weakness of high melting temperature and lower mechanical strength. In this study, the change in microstructure, elements, the structural and melting point of Sn-0.7Cu after the addition of different compositions of Zn element was discussed. The result shows that after adding a small amount of Zn, a refinement microstructure of Sn-0.7Cu-xZn solder alloy was obtained, and the melting point of the solder decreased from 227.7 °C to 225.7 °C. Besides, the formation new phase of was investigated by scanning electron microscope (SEM) followed by energy-dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). Besides, the behaviour of Sn-0.7Cu-xZn solder alloy can be further studied via open circuit potential (OCP) to determine the corrosion potential.

Topics
  • impedance spectroscopy
  • microstructure
  • corrosion
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • strength
  • Energy-dispersive X-ray spectroscopy
  • melting temperature