Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ferrand, H. Le

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Elephant skin-inspired mycelium tiles for thermal regulation of buildingscitations

Places of action

Chart of shared publication
Jain, A.
1 / 17 shared
Soh, E.
1 / 1 shared
Loh, N. Y. J.
1 / 1 shared
Teoh, J. H.
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Jain, A.
  • Soh, E.
  • Loh, N. Y. J.
  • Teoh, J. H.
OrganizationsLocationPeople

article

Elephant skin-inspired mycelium tiles for thermal regulation of buildings

  • Jain, A.
  • Soh, E.
  • Loh, N. Y. J.
  • Teoh, J. H.
  • Ferrand, H. Le
Abstract

<jats:title>Abstract</jats:title><jats:p>Of all types of ecosystems, cities are the most polluting and this pollution affects more than 50% of the global population. One main cause for this pollution is related to the energy used to heat or cool down buildings. Currently, only 15% of households in Southeast Asia have an air conditioner, but this number is expected to rise, leading to an increase in demand in energy consumption, electricity and CO<jats:sub>2</jats:sub> emissions which could further worsen global pollution and climate change. There is therefore an urgent need to find alternative solutions to cool buildings and regulate their temperatures. In this paper, inspiration is taken from elephants who live in very hot climates. Elephants can cool themselves thanks to the wrinkles on their skin that can limit heat gain, dissipate energy by evaporative cooling and store water. To emulate elephants’ cooling, tiles with elephant skin-inspired surface texture are designed. Computational simulations are performed to evaluate the effect of local shading due to the texture. Experimental tiles are produced using a biodegradable and natural material grown by a fungus, <jats:italic>Pleurotus Ostreatus.</jats:italic> These tiles are mycelium-bound composites (MBCs) where the fungus grew on bamboo microfibers, developing an interconnected web of cells called the mycelium that binds the microfibers together. The thermal properties of the tiles were measured for heating and cooling on the textured and flat side. The results show the tiles have anisotropic properties with a significant improvement by 25% in the cooling of the textured side over the flat side. In simulated rain conditions, the cooling is further improved by 42% as compared to dry conditions. The elephant-mycelium tiles are therefore promising for thermal regulation of building in Southeast Asia environments.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • simulation
  • anisotropic
  • composite
  • texture