People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Griesbaum, Rainer
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Cost Analysis of Automated Additive Printer Farms
Abstract
<jats:title>Abstract</jats:title><jats:p>Automated additive printer farms, which operate several printers in parallel and thus increase the productivity, are an efficient way to realize a fully flexible mass production, as has been shown by a number of examples. By means of a specifically developed calculation method and virtual representations of various printer farm concepts in a simulation environment, various farm concepts are analyzed regarding the cost structure and the productivity. Also, an automated farm consisting of several low-cost printers is compared to an industrial printer. Subsequently, future scenarios are set up taking into account economic and technological trends allowing an estimation of the impact on the manufacturing costs of automated additive printer farms. In this paper, the analysis is based upon the Fused Layer Modeling (FLM) process, but to a large extent the findings can be transferred to other additive manufacturing processes, for example stereolithography (SL) or digital light processing (DLP).</jats:p>