Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bergeron-Fortier, Simon

  • Google
  • 1
  • 11
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024The role of pore size and mechanical properties on the accumulation, retention and distribution of F98 glioblastoma cells in macroporous hydrogelscitations

Places of action

Chart of shared publication
Naasri, Sahar
1 / 1 shared
Delattre, Lisa
1 / 1 shared
Moreau, Vaiana
1 / 1 shared
Crescenzo, Gregory De
1 / 1 shared
Liberelle, Benoît
1 / 1 shared
Faucheux, Nathalie
1 / 1 shared
Therriault, Hélène
1 / 1 shared
Virgilio, Nick
1 / 6 shared
Solano, Angela Giraldo
1 / 1 shared
Lauzon, Marc-Antoine
1 / 2 shared
Paquette, Benoit
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Naasri, Sahar
  • Delattre, Lisa
  • Moreau, Vaiana
  • Crescenzo, Gregory De
  • Liberelle, Benoît
  • Faucheux, Nathalie
  • Therriault, Hélène
  • Virgilio, Nick
  • Solano, Angela Giraldo
  • Lauzon, Marc-Antoine
  • Paquette, Benoit
OrganizationsLocationPeople

article

The role of pore size and mechanical properties on the accumulation, retention and distribution of F98 glioblastoma cells in macroporous hydrogels

  • Naasri, Sahar
  • Delattre, Lisa
  • Moreau, Vaiana
  • Crescenzo, Gregory De
  • Liberelle, Benoît
  • Faucheux, Nathalie
  • Therriault, Hélène
  • Virgilio, Nick
  • Solano, Angela Giraldo
  • Bergeron-Fortier, Simon
  • Lauzon, Marc-Antoine
  • Paquette, Benoit
Abstract

<jats:title>Abstract</jats:title><jats:p>Glioblastoma (GBM) accounts for half of all central nervous system tumors. Once the tumor is removed, many GBM cells remain present near the surgical cavity and infiltrate the brain up to a distance of 20–30 mm, resulting in recurrence a few months later. GBM remains incurable due to the limited efficiency of current treatments, a result of the blood-brain barrier and sensitivity of healthy brain tissues to chemotherapy and radiation. A new therapeutic paradigm under development to treat GBM is to attract and accumulate GBM cells in a cancer cell trap inserted in the surgical cavity after tumor resection. In this work, porous gels were prepared using porous polylactide molds obtained from melt-processed co-continuous polymer blends of polystyrene and polylactide, with an average pore size ranging from 5 μm to over 500 μm. In order to efficiently accumulate and retain GBM brain cancer cells within a macroporous sodium alginate-based hydrogel trap, the pores must have an average diameter superior to 100 μm, with the best results obtained at 225 μm. In that case, the accumulation and retention of F98 GBM cells were more homogeneous, especially when functionalized with RGD adhesion peptides. At an alginate concentration of 1% w/v, the compression modulus reaches 15 kPa, close to the average value of 1–2 kPa reported for brain tissues, while adhesion and retention were also superior compared to 2% w/v gels. Overall, 1% w/v gels with 225 μm pores functionalized with the RGD peptide display the best performances.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • pore
  • melt
  • Sodium
  • polymer blend