Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Teske, Michael

  • Google
  • 18
  • 58
  • 261

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (18/18 displayed)

  • 2022Characterization of Ball-milled Poly(Nisopropylacrylamide) Nanogelscitations
  • 2022The influence of PEGDA’s molecular weight on its mechanical properties in the context of biomedical applications15citations
  • 2021A hydrogel based quasi-stationary test system for in vitro dexamethasone release studies for middle ear drug delivery systemscitations
  • 2020Smart releasing electrospun nanofibers-poly: L.lactide fibers as dual drug delivery system for biomedical application.20citations
  • 2020PEGDA drug delivery scaffolds manufactured with a novel hybrid AM processcitations
  • 20193D-printed PEGDA structure with multiple depots for advanced drug delivery systemscitations
  • 2019A Novel Hybrid Additive Manufacturing Process for Drug Delivery Systems with Locally Incorporated Drug Depots. 20citations
  • 2019Thermomechanical properties of PEGDA in combination with different photo-curable comonomers1citations
  • 2019Controlled biodegradation of metallic biomaterials by plasma polymer coatings using hexamethyldisiloxane and allylamine monomers2citations
  • 2018Thermomechanical properties of PEGDA and its co-polymers5citations
  • 2018Novel approach for a PTX/VEGF dual drug delivery system in cardiovascular applications-an innovative bulk and surface drug immobilization.17citations
  • 2017Osteointegration of Porous Poly-ε-Caprolactone-Coated and Previtalised Magnesium Implants in Critically Sized Calvarial Bone Defects in the Mouse Model. 10citations
  • 2017In Vitro Evaluation of PCL and P(3HB) as Coating Materials for Selective Laser Melted Porous Titanium Implants. 14citations
  • 2017Influence of bulk incorporation of FDAc and PTX on polymer properties1citations
  • 2015Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCLcitations
  • 2015Surface Modification of Biodegradable Polymers towards Better Biocompatibility and Lower Thrombogenicity.36citations
  • 2015Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL.37citations
  • 2015SLM produced porous titanium implant improvements for enhanced vascularization and osteoblast seeding.83citations

Places of action

Chart of shared publication
Wulf, Katharina
5 / 5 shared
Illner, Sabine
2 / 4 shared
Huling, Jennifer
1 / 1 shared
Grabow, Niels
9 / 20 shared
Mau, Robert
6 / 8 shared
Arbeiter, Daniela
5 / 12 shared
Eickner, Thomas
8 / 8 shared
Rekowska, Natalia
5 / 5 shared
Riess, Alexander
4 / 4 shared
Seitz, Hermann
6 / 20 shared
Senz, Volkmar
2 / 3 shared
Schmitz, Klaus-Peter
2 / 8 shared
Kp, Schmitz
2 / 2 shared
Grabow, N.
5 / 5 shared
Kohse, S.
1 / 1 shared
Matschegewski, C.
2 / 2 shared
Koper, Daniela
2 / 2 shared
Huling, J.
1 / 1 shared
Reiss, Alexander
1 / 1 shared
Konasch, Jan
4 / 4 shared
Rekowska, N.
1 / 1 shared
Eickner, T.
2 / 2 shared
Konasch, J.
1 / 1 shared
Riess, A.
1 / 1 shared
Fink, Joschka
1 / 1 shared
Brietzke, Andreas
1 / 1 shared
Bajer, D.
1 / 1 shared
Windhövel, C.
1 / 1 shared
Nc, Gellrich
4 / 4 shared
Murua Escobar, H.
4 / 4 shared
Seifert, H.
1 / 1 shared
Roland, L.
2 / 2 shared
Haferkamp, H.
4 / 6 shared
Matena, J.
4 / 4 shared
Nolte, I.
4 / 4 shared
Seiler, C.
1 / 1 shared
Grau, M.
2 / 2 shared
Lüpke, Matthias
1 / 1 shared
Aliuos, P.
1 / 1 shared
Petersen, S.
3 / 4 shared
Beyerbach, Martin
1 / 1 shared
Haferkamp, Heinz
1 / 11 shared
Petersen, Svea
1 / 2 shared
Gellrich, Nils-Claudius
1 / 1 shared
Matena, Julia
1 / 1 shared
Escobar, Hugo Murua
1 / 1 shared
Nolte, Ingo
1 / 1 shared
Kampmann, Andreas
1 / 1 shared
Gieseke, Matthias
1 / 1 shared
Rudolph, A.
1 / 2 shared
Sternberg, K.
1 / 1 shared
Wree, A.
1 / 1 shared
Hovakimyan, M.
1 / 1 shared
Illner, S.
1 / 1 shared
Kiefel, V.
1 / 1 shared
Gieseke, M.
2 / 3 shared
Kampmann, A.
2 / 2 shared
Beyerbach, M.
2 / 2 shared
Chart of publication period
2022
2021
2020
2019
2018
2017
2015

Co-Authors (by relevance)

  • Wulf, Katharina
  • Illner, Sabine
  • Huling, Jennifer
  • Grabow, Niels
  • Mau, Robert
  • Arbeiter, Daniela
  • Eickner, Thomas
  • Rekowska, Natalia
  • Riess, Alexander
  • Seitz, Hermann
  • Senz, Volkmar
  • Schmitz, Klaus-Peter
  • Kp, Schmitz
  • Grabow, N.
  • Kohse, S.
  • Matschegewski, C.
  • Koper, Daniela
  • Huling, J.
  • Reiss, Alexander
  • Konasch, Jan
  • Rekowska, N.
  • Eickner, T.
  • Konasch, J.
  • Riess, A.
  • Fink, Joschka
  • Brietzke, Andreas
  • Bajer, D.
  • Windhövel, C.
  • Nc, Gellrich
  • Murua Escobar, H.
  • Seifert, H.
  • Roland, L.
  • Haferkamp, H.
  • Matena, J.
  • Nolte, I.
  • Seiler, C.
  • Grau, M.
  • Lüpke, Matthias
  • Aliuos, P.
  • Petersen, S.
  • Beyerbach, Martin
  • Haferkamp, Heinz
  • Petersen, Svea
  • Gellrich, Nils-Claudius
  • Matena, Julia
  • Escobar, Hugo Murua
  • Nolte, Ingo
  • Kampmann, Andreas
  • Gieseke, Matthias
  • Rudolph, A.
  • Sternberg, K.
  • Wree, A.
  • Hovakimyan, M.
  • Illner, S.
  • Kiefel, V.
  • Gieseke, M.
  • Kampmann, A.
  • Beyerbach, M.
OrganizationsLocationPeople

article

Smart releasing electrospun nanofibers-poly: L.lactide fibers as dual drug delivery system for biomedical application.

  • Wulf, Katharina
  • Teske, Michael
  • Kp, Schmitz
  • Grabow, N.
  • Kohse, S.
  • Matschegewski, C.
  • Koper, Daniela
  • Huling, J.
Abstract

An ongoing challenge in drug delivery systems for a variety of medical applications, including cardiovascular diseases, is the delivery of multiple drugs to address numerous phases of a treatment or healing process. Therefore, an extended dual drug delivery system (DDDS) based on our previously reported cardiac DDDS was generated. Here we use the polymer poly(L-lactide) (PLLA) as drug carrier with the cytostatic drug Paclitaxel (PTX) and the endothelial cell proliferation enhancing growth factor, human vascular endothelial growth factor (VEGF), to overcome typical in-stent restenosis complications. We succeeded in using one solution to generate two separate DDDS via spray coating (film) and electrospinning (nonwoven) with the same content of PTX and the same post processing for VEGF immobilisation. Both processes are suitable as coating techniques for implants. The contact angle analysis revealed differences between films and nonwovens. Whereas, the morphological analysis demonstrated nearly no changes occurred after immobilisation of both drugs. Glass transition temperatures (T<sub>g</sub> ) and degree of crystallinity (χ) show only minor changes. The amount of immobilised VEGF on nonwovens was over 300% higher compared to the films. Also, the nonwovens revealed a much faster and over three times higher PTX release over 70 d compared to the films. The almost equal physical properties of nonwovens and films allow the comparison of both DDDS independently of their fabrication process. Both films and nonwovens have significantly increased in vitro cell viability for human umbilical vein endothelial cells (EA.hy926) with dual loaded PTX and VEGF compared to PTX-only loaded samples.

Topics
  • impedance spectroscopy
  • polymer
  • phase
  • glass
  • glass
  • glass transition temperature
  • spray coating
  • crystallinity
  • electrospinning
  • elemental analysis