Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sooraj Hussain, Ns

  • Google
  • 2
  • 10
  • 124

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Novel cerium doped glass-reinforced hydroxyapatite with antibacterial and osteoconductive properties for bone tissue regeneration54citations
  • 2012Structural studies of lead lithium borate glasses doped with silver oxide70citations

Places of action

Chart of shared publication
Gomes, Ps
1 / 14 shared
Santos, Jd
1 / 37 shared
Ferraz, Mp
1 / 6 shared
Morais, Ds
1 / 2 shared
Fernandes, S.
1 / 9 shared
Sampaio, Paula
1 / 7 shared
Fernandes, Mh
1 / 25 shared
Lopes, Ma
1 / 37 shared
Freire, Cristina
1 / 55 shared
Coelho, J.
1 / 16 shared
Chart of publication period
2015
2012

Co-Authors (by relevance)

  • Gomes, Ps
  • Santos, Jd
  • Ferraz, Mp
  • Morais, Ds
  • Fernandes, S.
  • Sampaio, Paula
  • Fernandes, Mh
  • Lopes, Ma
  • Freire, Cristina
  • Coelho, J.
OrganizationsLocationPeople

article

Novel cerium doped glass-reinforced hydroxyapatite with antibacterial and osteoconductive properties for bone tissue regeneration

  • Gomes, Ps
  • Sooraj Hussain, Ns
  • Santos, Jd
  • Ferraz, Mp
  • Morais, Ds
  • Fernandes, S.
  • Sampaio, Paula
  • Fernandes, Mh
  • Lopes, Ma
Abstract

The aim of this work was to develop a bioactive bone substitute with an effective antibacterial ability based on a cerium (Ce) doped glass-reinforced hydroxyapatite (GR-HA) composite. Developed composites were physicochemically characterized, using x-ray diffraction (XRD) analysis, SEM, energy dispersive x-ray spectroscopy (EDS), and flexural bending strength (FBS) tests. X-ray photoelectron spectroscopy (XPS) analysis was performed to analyze the oxidation state of Ce in the prepared doped glass. The antimicrobial activity of the composites was evaluated against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa; whether the cytocompatibility profile was assayed with human osteoblastic-like cells (Mg-63 cell line). The results revealed that the Ce inclusion in the GR-HA matrix induced the antimicrobial ability of the composite. In addition, Ce-doped materials reported an adequate biological behavior following seeding of osteoblastic populations, by inducing cell adhesion and proliferation. Developed materials were also found to enhance the expression of osteoblastic-related genes. Overall, the developed GR-HA_Ce composite is a prospective candidate to be used within the clinical scenario with a successful performance due to the effective antibacterial properties and capability of enhancing the osteoblastic cell response.

Topics
  • impedance spectroscopy
  • inclusion
  • scanning electron microscopy
  • x-ray diffraction
  • x-ray photoelectron spectroscopy
  • glass
  • glass
  • strength
  • composite
  • Energy-dispersive X-ray spectroscopy
  • Cerium