Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kroha, H.

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022A 4-channel front-end electronics for muon drift tubes detectors in 65 nm CMOS technologycitations

Places of action

Chart of shared publication
Baschirotto, A.
1 / 2 shared
Richter, R.
1 / 4 shared
Fras, M.
1 / 1 shared
Matteis, M. De
1 / 1 shared
Kortner, O.
1 / 1 shared
Shah, S. A. A.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Baschirotto, A.
  • Richter, R.
  • Fras, M.
  • Matteis, M. De
  • Kortner, O.
  • Shah, S. A. A.
OrganizationsLocationPeople

article

A 4-channel front-end electronics for muon drift tubes detectors in 65 nm CMOS technology

  • Baschirotto, A.
  • Richter, R.
  • Fras, M.
  • Matteis, M. De
  • Kroha, H.
  • Kortner, O.
  • Shah, S. A. A.
Abstract

<jats:title>Abstract</jats:title><jats:p>A 4-channel front-end electronics chip in 65 nm CMOS technology (ASD65 nm) for muon drift tube chambers at high background counting rates in the ATLAS detector at High-Luminosity LHC and in future high-energy collider experiments is presented. Each channel of the ASD65 nm chip is a mixed-signal processing circuit consisting of a Charge Sensitive Preamplifier (CSP), a two-stage shaper, and a timing discriminator. The CSP exhibits a peaking time of 11 ns and a sensitivity of 1.1 mV/fC. The peaking time of the full analog chain is 14.6 ns. The minimum signal-to-noise ratio of the channel is 15 dB for the minimum input charge of 5 fC, and it rises to 40.5 dB for the maximum input charge of 100 fC. At the output, the time representation of input signal is provided in both, CMOS level as well as low-voltage-differential-signal. Each channel consumes a current of 10.6 mA from a single 1.2 V supply, and occupies an area of 0.235 mm<jats:sup>2</jats:sup>. The specified performance parameters of the ASD65 nm have been achieved for 60 pF parasitic capacitance of the detector connected the input terminal.</jats:p>

Topics
  • impedance spectroscopy
  • experiment