Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dudak, J.

  • Google
  • 1
  • 3
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Application of 2 × 5 MPX3 camera with monolithic sensor for phase contrast imaging and computed tomography1citations

Places of action

Chart of shared publication
Zemlicka, J.
1 / 1 shared
Kumpova, I.
1 / 1 shared
Vavrik, Daniel
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Zemlicka, J.
  • Kumpova, I.
  • Vavrik, Daniel
OrganizationsLocationPeople

article

Application of 2 × 5 MPX3 camera with monolithic sensor for phase contrast imaging and computed tomography

  • Zemlicka, J.
  • Kumpova, I.
  • Dudak, J.
  • Vavrik, Daniel
Abstract

<jats:title>Abstract</jats:title><jats:p>This work focuses on the non-destructive identification of delamination in layered structures utilizing the X-ray phase contrast effect. This effect naturally occurs on sharp edges, material interfaces and fine textures, and can be retrieved from radiographic data even without any grating in special cases, as will be demonstrated for the layered carbon fibre reinforced plastic composites used in the aerospace industry. Such delamination can be described as the local disbonding of composite layers, which often occurs due to the cyclic loading of the structural elements while in service. Such a flaw may significantly decrease its bearing capacity, and therefore periodic non-destructive inspection is needed. Aside from ultrasound inspection, which provides limited resolution and detectability, X-ray imaging and tomography is widely used in practise. Nevertheless, the identification of delamination may be difficult utilizing X-ray computed tomography, as delaminated faces may remain in contact — the defect has negligible volume. On the other hand, the distance between faces is not relevant for X-ray phase contrast imaging. In addition, access to the structural elements is often limited for X-ray imaging. For shaped parts, it will be shown in this work that limited access is not as critical a problem in comparison with standard computed tomography.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • phase
  • tomography
  • layered
  • composite
  • texture
  • defect