Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yeadon, Will

  • Google
  • 3
  • 14
  • 119

Durham University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023The death of the short-form physics essay in the coming AI revolution116citations
  • 2021Multiphysics modelling of gas tungsten arc welding on ultra-thin-walled titanium tubingcitations
  • 2020In situ micro gas tungsten constricted arc welding of ultra-thin walled 2.275 mm outer diameter grade 2 commercially pure titanium tubing3citations

Places of action

Chart of shared publication
Inyang, Oto-Obong
1 / 1 shared
Testrow, Craig Paul
1 / 1 shared
Mizouri, Arin
1 / 1 shared
Peach, Alex
1 / 1 shared
Gannaway, F.
1 / 2 shared
Viehhauser, G.
1 / 1 shared
Crouvizier, M.
1 / 1 shared
Kemp-Russell, P.
1 / 1 shared
Rendell-Read, A.
1 / 1 shared
Marin-Reyes, H.
1 / 1 shared
French, R.
1 / 2 shared
Cooper, L.
1 / 1 shared
Edwards, S.
1 / 2 shared
Mercer, I.
1 / 1 shared
Chart of publication period
2023
2021
2020

Co-Authors (by relevance)

  • Inyang, Oto-Obong
  • Testrow, Craig Paul
  • Mizouri, Arin
  • Peach, Alex
  • Gannaway, F.
  • Viehhauser, G.
  • Crouvizier, M.
  • Kemp-Russell, P.
  • Rendell-Read, A.
  • Marin-Reyes, H.
  • French, R.
  • Cooper, L.
  • Edwards, S.
  • Mercer, I.
OrganizationsLocationPeople

article

In situ micro gas tungsten constricted arc welding of ultra-thin walled 2.275 mm outer diameter grade 2 commercially pure titanium tubing

  • Gannaway, F.
  • Viehhauser, G.
  • Crouvizier, M.
  • Kemp-Russell, P.
  • Rendell-Read, A.
  • Marin-Reyes, H.
  • Yeadon, Will
  • French, R.
  • Cooper, L.
  • Edwards, S.
  • Mercer, I.
Abstract

Ultra-thin walled cooling tubes for heat exchangers and condenser units have applications in multiple high-value manufacturing industries. Grade 2 commercially pure titanium (CP-2 Ti) requires far less mass to achieve the same mass flow handling abilities as stainless steel tubing yet it is more challenging to join, particularly at wall thicknesses less than 500 μm (termed ultra-thin walled tube). This paper presents a single-pass joinery method that produces reliable welds on 2.275 mm outer diameter (OD), 160 ± 10 μm wall thickness tubing with a service life of 20 of more years. This is achieved through an automated orbital gas tungsten constricted arc welding (GTCAW) process incorporating enveloping low-mass sleeves used in tandem with a buttressing internal gas pressure to support the molten metal and maintain consistent internal diameter inside the tube. The industrial applicability is demonstrated through the production of a 1:1 scale mock-up of a fixed geometry CO2 cooling circuit for a next-generation particle detector. The tensile strengths of the joints, 403.8 ± 4.2 MPa, exceed the tensile strength of the parent CP-2 Ti.

Topics
  • impedance spectroscopy
  • stainless steel
  • laser emission spectroscopy
  • strength
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy
  • titanium
  • tensile strength
  • tungsten
  • commercially pure titanium