Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Saraeva, I. N.

  • Google
  • 1
  • 10
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Laser post-processing of halide perovskites for enhanced photoluminescence and absorbance9citations

Places of action

Chart of shared publication
Makarov, S. V.
1 / 4 shared
Milichko, V. A.
1 / 2 shared
Tiguntseva, E. Y.
1 / 1 shared
Komissarenko, F. E.
1 / 1 shared
Ishteev, A. R.
1 / 1 shared
Kudryashov, S. I.
1 / 2 shared
Zuev, D. A.
1 / 1 shared
Zakhidov, A. A.
1 / 3 shared
Tsypkin, A. N.
1 / 1 shared
Haroldson, R.
1 / 2 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Makarov, S. V.
  • Milichko, V. A.
  • Tiguntseva, E. Y.
  • Komissarenko, F. E.
  • Ishteev, A. R.
  • Kudryashov, S. I.
  • Zuev, D. A.
  • Zakhidov, A. A.
  • Tsypkin, A. N.
  • Haroldson, R.
OrganizationsLocationPeople

article

Laser post-processing of halide perovskites for enhanced photoluminescence and absorbance

  • Makarov, S. V.
  • Milichko, V. A.
  • Tiguntseva, E. Y.
  • Saraeva, I. N.
  • Komissarenko, F. E.
  • Ishteev, A. R.
  • Kudryashov, S. I.
  • Zuev, D. A.
  • Zakhidov, A. A.
  • Tsypkin, A. N.
  • Haroldson, R.
Abstract

Hybrid halide perovskites have emerged as one of the most promising type of materials for thin-film photovoltaic and light-emitting devices. Further boosting their performance is critically important for commercialization. Here we use femtosecond laser for post-processing of organo-metalic perovskite (MAPbI<sub>3</sub>) films. The high throughput laser approaches include both ablative silicon nanoparticles integration and laser-induced annealing. By using these techniques, we achieve strong enhancement of photoluminescence as well as useful light absorption. As a result, we observed experimentally 10-fold enhancement of absorbance in a perovskite layer with the silicon nanoparticles. Direct laser annealing allows for increasing of photoluminescence over 130%, and increase absorbance over 300% in near-IR range. We believe that the developed approaches pave the way to novel scalable and highly effective designs of perovskite based devices.

Topics
  • nanoparticle
  • perovskite
  • impedance spectroscopy
  • photoluminescence
  • Silicon
  • annealing