People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Meinders, Vincent T.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2016The softened heat-affected zone in resistance spot welded tailor hardened boron steel: a material model for crash simulation
- 2016Plasticity and fracture modeling of the heat-affected zone in resistance spot welded tailor hardened boron steelcitations
- 2016Determination of strain hardening parameters of tailor hardened boron steel up to high strains using inverse FEM optimization and strain field matchingcitations
- 2016On the nonlinear anelastic behaviour of AHSScitations
- 2015Identification of plasticity model parameters of the heat-affected zone in resistance spot welded martensitic boron steelcitations
- 2014Plasticity and fracture modeling of quench-hardenable boron steel with tailored propertiescitations
- 2012Material Induced Anisotropic Damage
- 2000Improvements in FE-analysis of real-life sheet metal forming
Places of action
Organizations | Location | People |
---|
document
On the nonlinear anelastic behaviour of AHSS
Abstract
It has been widely observed that below the yield stress the loading/unloading stress-strain curves of plastically deformed metals are in fact not linear but slightly curved, showing a hysteresis behaviour during unloading/reloading cycles. In addition to the purely elastic strain, extra dislocation based micro-mechanisms are contributing to the reversible strain of the material which results in the nonlinear unloading/reloading behaviour. This extra reversible strain is the so called anelastic strain. As a result, the springback will be larger than that predicted by FEM considering only the recovery of the elastic strain. In this work the physics behind the anelastic behaviour is discussed and experimental results for a dual phase steel are demonstrated. Based on the physics of the phenomenon a model for anelastic behaviour is presented that can fit the experimental results with a good accuracy.