Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Iii, J. W. Ager

  • Google
  • 18
  • 58
  • 358

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (18/18 displayed)

  • 2012P-type InGaN across entire composition rangecitations
  • 2011Mg doped InN and confirmation of free holes in InN45citations
  • 2009Electrical and electrothermal transport in InN11citations
  • 2007Superheating and supercooling of Ge nanocrystals embedded in SiO 26citations
  • 2007Synthesis and optical properties of multiband III-V semiconductor alloys1citations
  • 2006Multiband GaNAsP quaternary alloys130citations
  • 2005Highly mismatched alloys for intermediate band solar cellscitations
  • 2005A chemical approach to 3-D lithographic patterning of Si and Ge nanocrystalscitations
  • 2004Oxygen induced band-gap reduction in ZnOxSe1-x alloys6citations
  • 2004Group III-nitride alloys as photovoltaic materials10citations
  • 2004Effects of pressure on the band structure of highly mismatched Zn1-yMnyOxTe1-x alloys10citations
  • 2004Effect of oxygen on the electronic band structure of II-O-VI alloys1citations
  • 2004Characterization and manipulation of exposed Ge nanocrystalscitations
  • 2003Band-gap bowing effects in BxGa1-xAs alloys39citations
  • 2003Narrow bandgap group III-nitride alloys24citations
  • 2003Effect of oxygen on the electronic band structure in ZnOxSe1-x alloys75citations
  • 2000Effect of nitrogen on the electronic band structure of group III-N-V alloyscitations
  • 2000Effect of nitrogen on the band structure of III-N-V alloyscitations

Places of action

Chart of shared publication
Alarcon-Llado, E.
1 / 4 shared
Mayer, M. A.
3 / 5 shared
Walukiewicz, W.
15 / 87 shared
Wang, K.
2 / 27 shared
Nanishi, Y.
2 / 9 shared
Araki, T.
2 / 8 shared
Sakaguchi, J.
1 / 1 shared
Katsuki, T.
1 / 3 shared
Iwamoto, R.
1 / 1 shared
Miller, N.
2 / 3 shared
Yamaguchi, T.
1 / 6 shared
Haller, E. E.
16 / 30 shared
Koblmüller, G.
1 / 3 shared
Liliental-Weber, Z.
2 / 25 shared
Iii, H. M. Smith
1 / 1 shared
Hawkridge, M. E.
1 / 2 shared
Gallinat, C.
1 / 1 shared
Jones, R. E.
2 / 8 shared
Speck, J. S.
1 / 2 shared
Schaff, W. J.
1 / 10 shared
Xu, Q.
3 / 11 shared
Glaeser, A. M.
1 / 1 shared
Yuan, C. W.
1 / 2 shared
Ridgway, M. C.
1 / 38 shared
Yi, D. O.
3 / 3 shared
Beeman, J. W.
4 / 21 shared
Chrzan, D. C.
3 / 6 shared
Sharp, I. D.
5 / 6 shared
Liao, C. Y.
3 / 6 shared
Minor, A. M.
1 / 10 shared
Dubon, O. D.
5 / 40 shared
Farshchi, R.
2 / 6 shared
Li, S. X.
3 / 5 shared
Bour, D.
1 / 1 shared
Scrapulla, M. A.
1 / 1 shared
Wu, J.
8 / 56 shared
Becla, P.
2 / 6 shared
Shan, W.
8 / 16 shared
Dubón, O. D.
1 / 2 shared
Robinson, J. T.
1 / 1 shared
Nabetani, Y.
3 / 3 shared
Lu, Hai
2 / 5 shared
Schaff, William J.
2 / 5 shared
Scarpulla, M. A.
1 / 23 shared
Scapulla, M. A.
1 / 1 shared
Beeman, J.
1 / 1 shared
Zakharov, D. N.
1 / 3 shared
Kurtz, Sarah R.
3 / 3 shared
Friedman, D. J.
3 / 6 shared
Qeisz, J. F.
1 / 1 shared
Matsumoto, T.
1 / 6 shared
Ito, Y.
1 / 11 shared
Mukawa, T.
1 / 1 shared
Nauka, C.
1 / 1 shared
Geisz, J. F.
2 / 6 shared
Olson, J. M.
2 / 2 shared
Xin, H. P.
1 / 1 shared
Tu, C. W.
1 / 8 shared
Chart of publication period
2012
2011
2009
2007
2006
2005
2004
2003
2000

Co-Authors (by relevance)

  • Alarcon-Llado, E.
  • Mayer, M. A.
  • Walukiewicz, W.
  • Wang, K.
  • Nanishi, Y.
  • Araki, T.
  • Sakaguchi, J.
  • Katsuki, T.
  • Iwamoto, R.
  • Miller, N.
  • Yamaguchi, T.
  • Haller, E. E.
  • Koblmüller, G.
  • Liliental-Weber, Z.
  • Iii, H. M. Smith
  • Hawkridge, M. E.
  • Gallinat, C.
  • Jones, R. E.
  • Speck, J. S.
  • Schaff, W. J.
  • Xu, Q.
  • Glaeser, A. M.
  • Yuan, C. W.
  • Ridgway, M. C.
  • Yi, D. O.
  • Beeman, J. W.
  • Chrzan, D. C.
  • Sharp, I. D.
  • Liao, C. Y.
  • Minor, A. M.
  • Dubon, O. D.
  • Farshchi, R.
  • Li, S. X.
  • Bour, D.
  • Scrapulla, M. A.
  • Wu, J.
  • Becla, P.
  • Shan, W.
  • Dubón, O. D.
  • Robinson, J. T.
  • Nabetani, Y.
  • Lu, Hai
  • Schaff, William J.
  • Scarpulla, M. A.
  • Scapulla, M. A.
  • Beeman, J.
  • Zakharov, D. N.
  • Kurtz, Sarah R.
  • Friedman, D. J.
  • Qeisz, J. F.
  • Matsumoto, T.
  • Ito, Y.
  • Mukawa, T.
  • Nauka, C.
  • Geisz, J. F.
  • Olson, J. M.
  • Xin, H. P.
  • Tu, C. W.
OrganizationsLocationPeople

article

Superheating and supercooling of Ge nanocrystals embedded in SiO 2

  • Xu, Q.
  • Glaeser, A. M.
  • Yuan, C. W.
  • Ridgway, M. C.
  • Yi, D. O.
  • Beeman, J. W.
  • Chrzan, D. C.
  • Sharp, I. D.
  • Iii, J. W. Ager
  • Liao, C. Y.
  • Haller, E. E.
  • Minor, A. M.
Abstract

<p>Free-standing nanocrystals exhibit a size-dependant thermodynamic melting point reduction relative to the bulk melting point that is governed by the surface free energy. The presence of an encapsulating matrix, however, alters the interface free energy of nanocrystals and their thermodynamic melting point can either increase or decrease relative to bulk. Furthermore, kinetic contributions can significantly alter the melting behaviours of embedded nanoscale materials. To study the effect of an encapsulating matrix on the melting behaviour of nanocrystals, we performed in situ electron diffraction measurements on Ge nanocrystals embedded in a silicon dioxide matrix. Ge nanocrystals were formed by multi-energy ion implantation into a 500 nm thick silica thin film on a silicon substrate followed by thermal annealing at 900 °C for 1 h. We present results demonstrating that Ge nanocrystals embedded in SiO<sub>2</sub> exhibit a 470 K melting/solidification hysteresis that is approximately symmetric about the bulk melting point. This unique behaviour, which is thought to be impossible for bulk materials, is well described using a classical thermodynamic model that predicts both kinetic supercooling and kinetic superheating. The presence of the silica matrix suppresses surface pre-melting of nanocrystals. Therefore, heterogeneous nucleation of both the liquid phase and the solid phase are required during the heating and cooling cycle. The magnitude of melting hysteresis is governed primarily by the value of the liquid Ge/solid Ge interface free energy, whereas the relative values of the solid Ge/matrix and liquid Ge/matrix interface free energies govern the position of the hysteresis loop in absolute temperature.</p>

Topics
  • impedance spectroscopy
  • surface
  • thin film
  • electron diffraction
  • Silicon
  • annealing
  • liquid phase
  • solidification