Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yuan, C. W.

  • Google
  • 2
  • 23
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2012Embedded binary eutectic alloy nanostructures4citations
  • 2007Superheating and supercooling of Ge nanocrystals embedded in SiO 26citations

Places of action

Chart of shared publication
Stone, P. R.
1 / 9 shared
Boswell-Koller, C. N.
1 / 2 shared
Chrzan, D. C.
2 / 6 shared
Sherburne, M. P.
1 / 2 shared
Dubon, O. D.
1 / 40 shared
Liao, C. Y.
2 / 6 shared
Haller, E. E.
2 / 30 shared
Minor, A. M.
2 / 10 shared
Ager, J. W.
1 / 11 shared
Watanabe, M.
1 / 5 shared
Guzman, J.
1 / 2 shared
Lieten, R. R.
1 / 1 shared
Conry, T.
1 / 2 shared
Beeman, J. W.
2 / 21 shared
Bustillo, K. C.
1 / 3 shared
Shin, S. J.
1 / 2 shared
Sawyer, C. A.
1 / 3 shared
Xu, Q.
1 / 11 shared
Glaeser, A. M.
1 / 1 shared
Ridgway, M. C.
1 / 38 shared
Yi, D. O.
1 / 3 shared
Sharp, I. D.
1 / 6 shared
Iii, J. W. Ager
1 / 18 shared
Chart of publication period
2012
2007

Co-Authors (by relevance)

  • Stone, P. R.
  • Boswell-Koller, C. N.
  • Chrzan, D. C.
  • Sherburne, M. P.
  • Dubon, O. D.
  • Liao, C. Y.
  • Haller, E. E.
  • Minor, A. M.
  • Ager, J. W.
  • Watanabe, M.
  • Guzman, J.
  • Lieten, R. R.
  • Conry, T.
  • Beeman, J. W.
  • Bustillo, K. C.
  • Shin, S. J.
  • Sawyer, C. A.
  • Xu, Q.
  • Glaeser, A. M.
  • Ridgway, M. C.
  • Yi, D. O.
  • Sharp, I. D.
  • Iii, J. W. Ager
OrganizationsLocationPeople

article

Superheating and supercooling of Ge nanocrystals embedded in SiO 2

  • Xu, Q.
  • Glaeser, A. M.
  • Yuan, C. W.
  • Ridgway, M. C.
  • Yi, D. O.
  • Beeman, J. W.
  • Chrzan, D. C.
  • Sharp, I. D.
  • Iii, J. W. Ager
  • Liao, C. Y.
  • Haller, E. E.
  • Minor, A. M.
Abstract

<p>Free-standing nanocrystals exhibit a size-dependant thermodynamic melting point reduction relative to the bulk melting point that is governed by the surface free energy. The presence of an encapsulating matrix, however, alters the interface free energy of nanocrystals and their thermodynamic melting point can either increase or decrease relative to bulk. Furthermore, kinetic contributions can significantly alter the melting behaviours of embedded nanoscale materials. To study the effect of an encapsulating matrix on the melting behaviour of nanocrystals, we performed in situ electron diffraction measurements on Ge nanocrystals embedded in a silicon dioxide matrix. Ge nanocrystals were formed by multi-energy ion implantation into a 500 nm thick silica thin film on a silicon substrate followed by thermal annealing at 900 °C for 1 h. We present results demonstrating that Ge nanocrystals embedded in SiO<sub>2</sub> exhibit a 470 K melting/solidification hysteresis that is approximately symmetric about the bulk melting point. This unique behaviour, which is thought to be impossible for bulk materials, is well described using a classical thermodynamic model that predicts both kinetic supercooling and kinetic superheating. The presence of the silica matrix suppresses surface pre-melting of nanocrystals. Therefore, heterogeneous nucleation of both the liquid phase and the solid phase are required during the heating and cooling cycle. The magnitude of melting hysteresis is governed primarily by the value of the liquid Ge/solid Ge interface free energy, whereas the relative values of the solid Ge/matrix and liquid Ge/matrix interface free energies govern the position of the hysteresis loop in absolute temperature.</p>

Topics
  • impedance spectroscopy
  • surface
  • thin film
  • electron diffraction
  • Silicon
  • annealing
  • liquid phase
  • solidification