People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baratta, Giuseppe A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
document
Amorphization of diamond by ion irradiation: a Raman study
Abstract
We performed ion irradiation experiments on diamond samples at room temperature, probed by in-situ Raman spectroscopy. Different ions are used with energies of 200 or 400 keV. The intensity of diamond Raman band (at 1332 cm<SUP>-1</SUP>) decreases exponentially as the ion fluence increases. Results from different ions demonstrate that this effect is due to changes in the optical properties of the damaged samples and is correlated with the energy lost by ions through elastic collisions with target nuclei. Amorphous carbon (sp<SUP>2</SUP>) is formed after a threshold of about 2×10<SUP>22</SUP> vacancies/cm<SUP>3</SUP>, or about 16 eV/C-atom deposited by elastic collisions. The peak position and full width at half maximum of the D-line and G-line of the synthesized amorphous carbon are studied. A comparison is made between the amorphization of diamond and that of graphite, forsterite, and water ice crystals. A linear relationship is found between the amorphization dose and the displacement energy. The results are discussed in view of their relevance in astrophysics....