People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yamanaka, N.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Multi-phase-field lattice Boltzmann simulations of semi-solid simple shear deformation in thin film
Abstract
<jats:title>Abstract</jats:title><jats:p>Semi-solid deformation during casting often results in significant solidification defects, such as segregation bands. Consequently, the development of a numerical simulation tool is crucial for accurately replicating semi-solid deformation. In our previous study, we applied a multi-phase-field lattice Boltzmann (MPF-LB) model to semi-solid deformation, facilitating seamless simulation from polycrystalline solidification to semi-solid deformation in a two-dimensional (2D) problem. This study extends the 2D MPF-LB model to a three-dimensional (3D) problem and develops a simulation method for semi-solid simple shear deformation in thin films. To enhance the efficiency of the 3D semi-solid simulation, we implemented parallel computations using multiple graphics processing units. Through a discussion of the relationships among the stress–strain curve, grain rearrangement behavior, and fluid flow, we confirmed that the developed 3D MPF-LB model successfully reproduced the characteristic phenomena of semi-solid deformation, and has high potential to investigate the nuanced mechanisms of semi-solid deformation.</jats:p>