People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kutsal, Mustafacan
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Microstructure and stress mapping in 3D at industrially relevant degrees of plastic deformationcitations
- 2024Microstructure and stress mapping in 3D at industrially relevant degrees of plastic deformationcitations
- 2024Microstructure and stress mapping in 3D at industrially relevant degrees of plastic deformationcitations
- 2023Exploring 4D microstructural evolution in a heavily deformed ferritic alloycitations
- 2022High-resolution 3D X-ray diffraction microscopy: 3D mapping of deformed metal microstructurescitations
- 2022High-resolution 3D X-ray diffraction microscopy: 3D mapping of deformed metal microstructurescitations
- 2022Multiscale Exploration of Texture and Microstructure Development in Recrystallization Annealing of Heavily Deformed Ferritic Alloyscitations
- 20224D microstructural evolution in a heavily deformed ferritic alloycitations
- 2021Bulk heterogeneity in barium titanate above the Curie temperaturecitations
- 2020Dark-field X-ray microscopy reveals mosaicity and strain gradients across sub-surface TiC and TiN particles in steel matrix compositescitations
Places of action
Organizations | Location | People |
---|
article
Exploring 4D microstructural evolution in a heavily deformed ferritic alloy
Abstract
We present a multi-scale study of recrystallization annealing of an 85% cold rolled Fe-3%Si alloy using a combination of dark field X-ray microscopy (DFXM), synchrotron X-ray diffraction (SXRD), and electron backscatter diffraction (EBSD). The intra-granular structure of the as-deformed grain reveals deformation bands separated by ≈ 3–5°misorientation. We monitor the structural evolution of a recrystallized grain embedded in bulk, from the early stages of recrystallization to 65% overall recrystallization through isothermal annealing steps. Results show that the recrystallized grain of interest (GOI) grows much faster than its surroundings yet remains constant in size as the recrystallization proceeds. Isolated dislocations embedded within the volume of the recrystallized GOI are investigated.