Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Isa, M.

  • Google
  • 2
  • 9
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Lightning Impulse Voltage Stresses In Underground Cablescitations
  • 2020Modelling of Piezoelectric Sensor with Different Materials Approach for Partial Discharge Detection on Power Transformer: PZT-5H, ZnO and AlN3citations

Places of action

Chart of shared publication
Arshad, Snm
1 / 1 shared
Fen, C. M. L.
1 / 1 shared
Laili, M. S.
1 / 1 shared
Mustafa, W. A.
1 / 1 shared
Ismail, B.
1 / 2 shared
Akashah, N. A.
1 / 1 shared
Rosmi, A. S.
1 / 1 shared
Rohani, M. N. K. H.
1 / 1 shared
Wooi, C. L.
1 / 1 shared
Chart of publication period
2023
2020

Co-Authors (by relevance)

  • Arshad, Snm
  • Fen, C. M. L.
  • Laili, M. S.
  • Mustafa, W. A.
  • Ismail, B.
  • Akashah, N. A.
  • Rosmi, A. S.
  • Rohani, M. N. K. H.
  • Wooi, C. L.
OrganizationsLocationPeople

article

Lightning Impulse Voltage Stresses In Underground Cables

  • Arshad, Snm
  • Isa, M.
  • Fen, C. M. L.
  • Laili, M. S.
Abstract

<jats:title>Abstract</jats:title><jats:p>Underground power cables are crucial for transmission and distribution. Lightning can stress their insulation, but not directly. So, impulse cable testing is studied. This research examines the cable’s transient response to standard and non-standard lightning impulse voltage waveforms. MATLAB Simulink was used to model a 132 kV wire with standard and non-standard impulse voltages. The IEC60060-1(2010) lightning impulse test uses a conventional waveform impulse voltage with a front time and a tail time of 1.2/50μs half value, while the non-standard test uses a front time and a tail time of 0.8/12s half value. Non-standard impulse waveforms are more accurate than standard waveforms. The impulse test voltage is four to five times the underground cable’s operational voltage and must withstand five applications without damage. Standard and non-standard impulse waveforms are injected with 132 kV and 550 kV to evaluate insulation failure or damage. Standard lightning and non-standard impulse voltage waveforms do not cause insulation failure or damage. When 132 kV and 550 kV are introduced into the normal and non-standard lightning impulse waveforms, the overshoot voltage increases. The peak voltage of a non-standard 550 kV impulse voltage waveform exceeds the IEC impulse withstand voltage. The finding shows that non-standard impulse voltage waves create increased cable voltage stress.</jats:p>

Topics
  • impedance spectroscopy
  • wire
  • ion-exclusion chromatography
  • ion-exchange chromatography