Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Londoño, F. A.

  • Google
  • 1
  • 4
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Bismuth ferrite-barium titanate system studies around morphotropic phase boundary2citations

Places of action

Chart of shared publication
Amaya, S.
1 / 1 shared
Colorado, H.
1 / 1 shared
Echavarria, A.
1 / 1 shared
Perez, J.
1 / 5 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Amaya, S.
  • Colorado, H.
  • Echavarria, A.
  • Perez, J.
OrganizationsLocationPeople

article

Bismuth ferrite-barium titanate system studies around morphotropic phase boundary

  • Amaya, S.
  • Colorado, H.
  • Echavarria, A.
  • Londoño, F. A.
  • Perez, J.
Abstract

<jats:title>Abstract</jats:title><jats:p>Nowadays, the electro-electronic industry and scientific community have a great interest in improving memory devices. A candidate is the bismuth ferrite owing to the coexistence of ferroelectricity and anti-ferromagnetism at room temperature, however, a high leakage current harms their ferroelectric properties. Thus, bismuth ferrite and barium titanate solutions improve the ferroelectric properties of bismuth ferrite and optimize the magnetoelectric coupling factor. This system is called multiferroic, materials exhibit the coexistence of ferromagnetic, ferroelectric, or ferro-elastic orders, which is of interest to the scientific physics community and electronic industry. In this paper, bismuth ferrite-barium titanate system around the morphotropic phase boundary was studied and analyzed. It was observed changes in the structural properties in function of barium titanate content. Calcination temperature was determined from thermogravimetric analysis curves to powders of bismuth ferrite-barium titanate system. Ceramic bodies were densified conventionally. Archimedes’ method was used for density measure. Ceramics with densities greater than 95% were obtained. 93% of the perovskite phase was obtained from structural results. Finally, structural properties were presented and analyzed using Mossbauer spectroscopy as complementary technique. These analyses are very important in solid state physics because to contribute to understanding the phenomenology and synthesis process of multiferroic materials.</jats:p>

Topics
  • density
  • perovskite
  • impedance spectroscopy
  • phase
  • thermogravimetry
  • phase boundary
  • Bismuth
  • Barium