People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lazov, Lyubomir
Technical University of Gabrovo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024STUDY OF ADHESION OF PHYSICAL VAPOR DEPOSITION COATINGS ON FUNCTIONAL TEXTILE WITH LASER POST-PROCESSINGcitations
- 2023INVESTIGATION OF SURFACE ROUGHNESS OF CARBON STEEL MACHINED PARTS AFTER NANOSECOND FIBER LASER MARKING
- 2023ALUMINUM AND STEEL WELDING WITH 500 W FIBRE LASER
- 2023Modification of the roughness of 304 stainless steel by laser surface texturing (LST)citations
- 2023Investigation of the influence of the processing speed and the linear pulse density of the laser surface texturing processcitations
- 2021Investigation of the influence of the scanning speed and step in laser marking and engraving of aluminumcitations
- 2021Analysis of the process of laser ablation of marble surfaces
- 2021Numerical modeling and simulation for laser beam welding of ultrafine-grained aluminiumcitations
- 2021Influence of pulse duration on the process of laser marking of CT80 carbon tool steel productscitations
- 2021INVESTIGATION OF THE INFLUENCE OF THE NUMBER OF REPETITIONS ON THE PROCESS OF LASER MARKING OF HS6-5-2-5 STEEL
- 2021Laser marking and engraving of household and industrial plastic productscitations
Places of action
Organizations | Location | People |
---|
article
Investigation of the influence of the processing speed and the linear pulse density of the laser surface texturing process
Abstract
<jats:title>Abstract</jats:title><jats:p>Fine-tuning laser parameters is necessary to achieve the desired quality of the process of laser surface texturing. This requires a set of experiments to assess the influence of the main process parameters on the quality of the surface of a treated alloy. By varying the laser parameters, different laser-material interactions, such as heating, melting, or evaporation can be observed. This study analyzes the influence of two interrelated processing parameters in laser surface texturing – the speed of beam motion on the surface on the one hand, and, on the other, the linear pulse density. They ultimately have a direct impact on the resulting microstructure, hydrophilicity, and electrochemical properties of austenitic steel (AISI 304). By adjusting the pulse repetition rate of a 1064-nm fiber laser from 500 kHz to 1000 kHz at a constant speed of 100 mm/s, the surface wettability changes from hydrophobicity to hydrophilicity. All surfaces treated with laser scanning speeds varying from 20 mm/s to 200 mm/s at a constant rate of 500 kHz are hydrophobic. As a result, the changed ability to repel liquids alters the corrosion properties of the steel in a 0.5 M H<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub> solution. The results allow one to distinguish ranges of laser-beam parameters that could be useful in selecting certain properties of the stainless-steel surface layer.</jats:p>