Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lazov, Lyubomir

  • Google
  • 11
  • 22
  • 29

Technical University of Gabrovo

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2024STUDY OF ADHESION OF PHYSICAL VAPOR DEPOSITION COATINGS ON FUNCTIONAL TEXTILE WITH LASER POST-PROCESSING1citations
  • 2023INVESTIGATION OF SURFACE ROUGHNESS OF CARBON STEEL MACHINED PARTS AFTER NANOSECOND FIBER LASER MARKINGcitations
  • 2023ALUMINUM AND STEEL WELDING WITH 500 W FIBRE LASERcitations
  • 2023Modification of the roughness of 304 stainless steel by laser surface texturing (LST)8citations
  • 2023Investigation of the influence of the processing speed and the linear pulse density of the laser surface texturing process1citations
  • 2021Investigation of the influence of the scanning speed and step in laser marking and engraving of aluminum6citations
  • 2021Analysis of the process of laser ablation of marble surfacescitations
  • 2021Numerical modeling and simulation for laser beam welding of ultrafine-grained aluminium4citations
  • 2021Influence of pulse duration on the process of laser marking of CT80 carbon tool steel products6citations
  • 2021INVESTIGATION OF THE INFLUENCE OF THE NUMBER OF REPETITIONS ON THE PROCESS OF LASER MARKING OF HS6-5-2-5 STEELcitations
  • 2021Laser marking and engraving of household and industrial plastic products3citations

Places of action

Chart of shared publication
Pacejs, Antons
1 / 1 shared
Zaicevs, Edgars
1 / 2 shared
Adijāns, Imants
1 / 1 shared
Mežinska, Silvija
1 / 1 shared
Teirumnieks, Edmunds
5 / 8 shared
Pīgožnis, Karlis
1 / 1 shared
Tsvyatkov, Petar
1 / 1 shared
Yankov, Emil
2 / 9 shared
Dudenkovs, Raitis
1 / 1 shared
Petrov, Nikolay Angelov
2 / 2 shared
Adijāns, I.
1 / 1 shared
Nikolova, M. P.
1 / 1 shared
Ilieva, M.
1 / 1 shared
Lengerov, A.
1 / 1 shared
Balchev, I.
3 / 3 shared
Atanasov, A.
1 / 1 shared
Angelov, N.
1 / 1 shared
Tsvyatkov, P.
1 / 1 shared
Angelov, Nikolay
2 / 3 shared
Draganov, Ivo
1 / 2 shared
Snikeris, A.
1 / 1 shared
Teirumnieks, E.
1 / 1 shared
Chart of publication period
2024
2023
2021

Co-Authors (by relevance)

  • Pacejs, Antons
  • Zaicevs, Edgars
  • Adijāns, Imants
  • Mežinska, Silvija
  • Teirumnieks, Edmunds
  • Pīgožnis, Karlis
  • Tsvyatkov, Petar
  • Yankov, Emil
  • Dudenkovs, Raitis
  • Petrov, Nikolay Angelov
  • Adijāns, I.
  • Nikolova, M. P.
  • Ilieva, M.
  • Lengerov, A.
  • Balchev, I.
  • Atanasov, A.
  • Angelov, N.
  • Tsvyatkov, P.
  • Angelov, Nikolay
  • Draganov, Ivo
  • Snikeris, A.
  • Teirumnieks, E.
OrganizationsLocationPeople

article

Investigation of the influence of the processing speed and the linear pulse density of the laser surface texturing process

  • Lazov, Lyubomir
  • Adijāns, I.
  • Nikolova, M. P.
  • Ilieva, M.
Abstract

<jats:title>Abstract</jats:title><jats:p>Fine-tuning laser parameters is necessary to achieve the desired quality of the process of laser surface texturing. This requires a set of experiments to assess the influence of the main process parameters on the quality of the surface of a treated alloy. By varying the laser parameters, different laser-material interactions, such as heating, melting, or evaporation can be observed. This study analyzes the influence of two interrelated processing parameters in laser surface texturing – the speed of beam motion on the surface on the one hand, and, on the other, the linear pulse density. They ultimately have a direct impact on the resulting microstructure, hydrophilicity, and electrochemical properties of austenitic steel (AISI 304). By adjusting the pulse repetition rate of a 1064-nm fiber laser from 500 kHz to 1000 kHz at a constant speed of 100 mm/s, the surface wettability changes from hydrophobicity to hydrophilicity. All surfaces treated with laser scanning speeds varying from 20 mm/s to 200 mm/s at a constant rate of 500 kHz are hydrophobic. As a result, the changed ability to repel liquids alters the corrosion properties of the steel in a 0.5 M H<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub> solution. The results allow one to distinguish ranges of laser-beam parameters that could be useful in selecting certain properties of the stainless-steel surface layer.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • microstructure
  • surface
  • corrosion
  • experiment
  • steel
  • evaporation