Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sapate, Suhas Gajanan

  • Google
  • 1
  • 1
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022A prototype model for detection and classification of landslides using satellite data4citations

Places of action

Chart of shared publication
Sharma, Akanksha
1 / 3 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Sharma, Akanksha
OrganizationsLocationPeople

article

A prototype model for detection and classification of landslides using satellite data

  • Sharma, Akanksha
  • Sapate, Suhas Gajanan
Abstract

<jats:title>Abstract</jats:title><jats:p>Landslides are natural and manmade disasters that cause threat to human life and lead to huge economic loss. Last few decade number of approaches have been developed for early detection of landslide for protecting life and saving properties. This paper proposes a prototype for an artificial intelligent model to detect and predict different types of landslides in hilly area with remote sensing techniques. All developing countries are following a steep increase in development of infrastructure like buildings, roads tunnels bridges railway tracks. Demand of connecting remote area is very high but on other side of environment it is also true that high demand of construction in morpho material area is causing many disasters like landslide. Landslide causes the loss of property and life so an early alarming will be help full for disaster management. Remotely sensed data pre-processed with artificial intelligent technologies will be helpful for landslide detection, creating landslide susceptibility map and inventory. Focus of this study is on enhancing the accuracy to detect landslide, list out the different features for extraction from satellite images and pre processing steps. This research also focuses on application of robust early prediction of type of landslide. This research will help in detection of landslide early to protect economical losses and human lives.</jats:p>

Topics
  • impedance spectroscopy
  • extraction
  • susceptibility