Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hirai, Y.

  • Google
  • 5
  • 43
  • 54

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Predicting the Expansion of Supernova Shells for High-Resolution Galaxy Simulations Using Deep Learning1citations
  • 2013Appearance of local strain fields and high electrical conductivity of macro-defects in P+-implanted 4H-SiC6citations
  • 2010Europium(iii)-doped liquid-crystalline physical gels27citations
  • 2002Effects of surface treatment and weave structure on interlaminar fracture behaviour of plain glass woven fabric composites4citations
  • 2000Effect of surface treatment on mode I interlaminar fracture behaviour of plain glass woven fabric composites16citations

Places of action

Chart of shared publication
Hirashima, K.
1 / 1 shared
Makino, J.
1 / 1 shared
Saitoh, T.
1 / 1 shared
Fujii, M. S.
1 / 1 shared
Moriwaki, K.
1 / 1 shared
Nagamachi, S.
1 / 1 shared
Kawado, S.
1 / 1 shared
Binnemans, Koen
1 / 929 shared
Cardinaels, T.
1 / 34 shared
Kato, T.
1 / 3 shared
Hanabusa, K.
1 / 1 shared
Bequignat, R.
2 / 3 shared
Suzuki, Y.
2 / 15 shared
Hamada, H.
2 / 4 shared
Lesko, J. J.
2 / 2 shared
Padmanabhan, K.
2 / 2 shared
Pabiot, J.
2 / 2 shared
Krawczak, P.
2 / 18 shared
Banhegyl, G.
1 / 1 shared
Pinter, S.
2 / 2 shared
Saidpour, H.
2 / 2 shared
Karger-Kocsis, J. K.
2 / 2 shared
Sezen, M.
2 / 2 shared
Fujihara, K.
2 / 2 shared
Sham, M. L.
2 / 2 shared
Schulte, K.
2 / 29 shared
Kim, J. K.
2 / 5 shared
Ye, L.
2 / 5 shared
Chart of publication period
2022
2013
2010
2002
2000

Co-Authors (by relevance)

  • Hirashima, K.
  • Makino, J.
  • Saitoh, T.
  • Fujii, M. S.
  • Moriwaki, K.
  • Nagamachi, S.
  • Kawado, S.
  • Binnemans, Koen
  • Cardinaels, T.
  • Kato, T.
  • Hanabusa, K.
  • Bequignat, R.
  • Suzuki, Y.
  • Hamada, H.
  • Lesko, J. J.
  • Padmanabhan, K.
  • Pabiot, J.
  • Krawczak, P.
  • Banhegyl, G.
  • Pinter, S.
  • Saidpour, H.
  • Karger-Kocsis, J. K.
  • Sezen, M.
  • Fujihara, K.
  • Sham, M. L.
  • Schulte, K.
  • Kim, J. K.
  • Ye, L.
OrganizationsLocationPeople

article

Predicting the Expansion of Supernova Shells for High-Resolution Galaxy Simulations Using Deep Learning

  • Hirashima, K.
  • Hirai, Y.
  • Makino, J.
  • Saitoh, T.
  • Fujii, M. S.
  • Moriwaki, K.
Abstract

<jats:title>Abstract</jats:title><jats:p>Small integration timesteps for a small fraction of the particles become a bottleneck for future galaxy simulations with a higher resolution, especially for massively parallel computing. As we increase the resolution, we must resolve physics on a smaller timescale while the total integration time is fixed as the universe age. The small timesteps for a small fraction of the particles worsen the scalability. More specifically, the regions affected by supernovae (SN) have the smallest timestep in the whole galaxy. Using a Hamiltonian splitting method, we calculate the SN regions with small timesteps using a few thousand CPU cores but integrate the entire galaxy using a shared timestep. For this approach, we need to pick up particles in regions, which will be affected by SN (the target particles) by the next global step (the integration timestep for the entire galaxy) in advance. In this work, we developed the deep learning model to predict the region where the shell due to a supernova explosion expands during one global step. In addition, we identify the target particles using image processing of the density distribution predicted by our deep learning model. Our algorithm could identify the target particles better than the method based on the analytical solution. This particle selection method using deep learning and the Hamiltonian splitting method will improve the performance of galaxy simulations with extremely high resolution.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • simulation