Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vietti, Amina

  • Google
  • 3
  • 9
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Realisation and characterisation of Cu-based references for neutron imaging calibration purposes and first results1citations
  • 2023Realisation and characterisation of Cu-based references for neutron imaging calibration purposes and first results1citations
  • 2022Raman spectroscopic characterization of corrosion products of archaeological iron4citations

Places of action

Chart of shared publication
Magalini, Marta
2 / 2 shared
Giudice, Alessandro Lo
1 / 1 shared
Re, Alessandro
2 / 3 shared
Grassini, Sabrina
2 / 33 shared
Guidorzi, Laura
2 / 2 shared
Vigorelli, Luisa
2 / 2 shared
Grazzi, Francesco
2 / 3 shared
Gelli, Nicla
2 / 2 shared
Lo Giudice, Alessandro
1 / 2 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Magalini, Marta
  • Giudice, Alessandro Lo
  • Re, Alessandro
  • Grassini, Sabrina
  • Guidorzi, Laura
  • Vigorelli, Luisa
  • Grazzi, Francesco
  • Gelli, Nicla
  • Lo Giudice, Alessandro
OrganizationsLocationPeople

article

Raman spectroscopic characterization of corrosion products of archaeological iron

  • Vietti, Amina
Abstract

<jats:title>Abstract</jats:title><jats:p>Raman spectroscopy is a versatile analytical technique which allows the detection of different molecules analysing the vibrational modes. As a matter of facts, the vibrational frequencies are typical of a specific chemical bond or of a structural symmetry. In this study, the Raman technique is used for the determination of iron corrosion products, mainly oxides and hydroxides. Metallic artefacts buried in soil are affected, in dependence of their electrochemical nobility, by corrosion phenomena of various entities, which partially modify their chemical composition and their structure. The process may occur both during burial time and after the extraction from the archaeological site, implying the potential loss of information about the metallurgical technology and structure of the object. The study of the corrosion phenomena allows to propose tailored strategies for the restoration and conservation of the artefacts, especially in view of the storage of the artefacts in a museum. This study validates the use of the Raman technique for this purpose, showing its efficiency in the identification of the iron corrosion products in favourable conditions for the analysis of Cultural Heritage artefacts, as the possibility of performing <jats:italic>in situ</jats:italic> analysis without the need of a previous sample preparation.</jats:p>

Topics
  • impedance spectroscopy
  • corrosion
  • extraction
  • chemical composition
  • iron
  • Raman spectroscopy