People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Othman, Rosli
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Microstructure and Phase Investigation of Sn-58Bi-xCu Lead-Free Solder After Immersion in Sodium Chloride Solution
Abstract
he changes in microstructure and phase of tin-bismuth-copper (Sn-58Bi-xCu) were investigated after immersion in 3.5 wt. % sodium chloride (NaCl) at variations of Cu micro-alloying at 0.25, 0.50, 0.75, 1.00 and 1.25 wt. %. The morphological observation revealed that the long crystal grains of the Cu-rich phase were produced as the amount of Cu increased. The phase analysis shows that at 0.5 wt. % Cu additions, the intermetallic compound od Cu 6 Sn 5 began to form and dominate the microstructure. After immersion in NaCl, a porous structure was seen covering the surface of the ternary solder, indicating the formation of a defective corrosion protection layer. The predominance of Cu 6 Sn 5 is believed to boost the galvanic corrosion coupling potential of the ternary solder. As a result, the more electrochemically reactive phase was pushed to be eliminated during immersion in 3.5 wt.% NaCl solution. Thus the black spots were formed. The presence of Cu 6 Sn 5 was seen to be detrimental to the electrochemical performance of Sn-58Bi-xCu.