People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kumar, Dinesh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Low friction characteristics and tribochemistry analysis of novel AlTiN/a-C based nanocomposite coatings
- 2023Data-driven multiscale modeling and robust optimization of composite structure with uncertainty quantificationcitations
- 2023Synthesis and characterization of DOE-based stir-cast hybrid aluminum composite reinforced with graphene nanoplatelets and cerium oxidecitations
- 2023Morphology and Corrosion Behavior of Stir-Cast Al6061- CeO2 Nanocomposite Immersed in NaCl and H2So4 Solutions
- 2023Genetic testing and family screening in idiopathic pediatric cardiomyopathy: a prospective observational study from a tertiary care center in North Indiacitations
- 2023Synergistic corrosion protection of stir-cast hybrid aluminum composites reinforcing CeO<sub>2</sub> and GNPs nano-particulatescitations
- 2023Continuous manufacturing of cocrystals using 3D-printed microfluidic chips coupled with spray coatingcitations
- 2023Sustainable utilization and valorization of potato waste: state of the art, challenges, and perspectivescitations
- 2023Bridging Length Scales Efficiently Through Surrogate Modellingcitations
- 2022Probing the Impact of Tribolayers on Enhanced Wear Resistance Behavior of Carbon-Rich Molybdenum-Based Coatingscitations
- 2022Perovskite Solar Cells: Assessment of the Materials, Efficiency, and Stabilitycitations
- 2022Multi-criteria decision making under uncertainties in composite materials selection and designcitations
- 2022Study on the Electrical Conduction Mechanism of Unipolar Resistive Switching Prussian White Thin Filmscitations
- 2022Study on the Electrical Conduction Mechanism of Unipolar Resistive Switching Prussian White Thin Filmscitations
- 2022Residual stress modeling and analysis in AISI A2 steel processed by an electrical discharge machine ; Modeliranje zaostalih napetosti in analiza jeklavrste AISI A2, obdelanega s potopno erozijocitations
- 2022Mathematical Model of Common-Mode Sources in Long-Cable-Fed Adjustable Speed Drivescitations
- 2022Mathematical model of common-mode sources in long-cable-fed adjustable speed drivescitations
- 2021Effect of Radiation of Moon on the physical property of Jalkhumbhi (Water hyacinth) Bhasma as a functional nanomaterials for its applications as medicine and in other areas of Science & Technology
- 2019Unveiling the Effects of Rare-Earth Substitutions on the Structure, Mechanical, Optical, and Imaging Features of ZrO2 for Biomedical Applicationscitations
- 2016A multi-slice simulation algorithm for grazing-incidence small-angle X-ray scatteringcitations
- 2014Liquid phase pulsed laser ablation: a route to fabricate different carbon nanostructurescitations
Places of action
Organizations | Location | People |
---|
article
Effect of Radiation of Moon on the physical property of Jalkhumbhi (Water hyacinth) Bhasma as a functional nanomaterials for its applications as medicine and in other areas of Science & Technology
Abstract
<jats:title>Abstract</jats:title><jats:p>Jalkhumbhi Bhasma as Nanomaterials is prepared using ecofriendly green approach in Pushya nakshtra and Rohini nakshtra. The crystal structure was evaluated, using modern scientific tools. X-ray diffaraction measurement shows that crystalline size and lattice constant of Jalkhumbhi bhasma prepared in Push and Rohini nakshtra were found, 26.62 nm and 54.55 nm and lattice constant 6.312A, 6.301A and respectively. This reveals the effect of radiation of moon alter the crystal structure. The Fourier transform infrared spectroscopy(FTIR) measurement shows functional group present in the materials are of the compound of K, Cl, C-Cl, NH<jats:sub>2</jats:sub>, C-O-C, C=O, Ca, and Ca(OH)<jats:sub>2</jats:sub> respectively. The magnitude of force constant between the atoms are 2.51307 N/cm, 4.16005 N/cm and 2.61932 N/cm, 4.20074 N/cm respectively in both the nakshtras, which measure the interatomic strength. The photoluminescence spectra (PL) reveals that the broad emission of radiation spectrum from both the materials lie in the visible region, showing broad blue emission. The energy band gap value for the most significant intense peak corresponding to 481 nm (2.55 eV) corresponding to 350 nm excitation of radiation and 501 nm (2.475 eV) for 370 nm. The optical property shows that prepared Jalkhambhibhasma may be useful as semiconductor electronics nanomaterials, which were prepared using eco-friendly approach. This may open a new window for material science and pharmaceutical sectar for the production of such materials for electronic based industries, in addition, to using as an evidence based medicine. The effect of natural radiation of moon changes the crystal structure and properties of materials, which are beneficial for health as well as in other areas of science and technology due to its crystalline size and optical properties.</jats:p>